Cite

Abdalla, K., Mutema, M., Chivenge, P., Everson, C., and Chaplot, V. (2018). Grassland degradation significantly enhances soil CO2 emission. Catena, 167, 284 – 292. DOI: 10.1016/j.catena.2018.05.010. Search in Google Scholar

Abdalla, K., Chivenge, P., Ciais, P., and Chaplot, V. (2021). Long-term (64 years) annual burning lessened soil organic carbon and nitrogen content in a humid subtropical grassland. Global Change Biology, 27(24), 6436 – 6453. DOI:10.1111/gcb.15918. Search in Google Scholar

Abdalla, K., Mutema, M., Chivenges, P., and Everson, C. (2022). Grassland rehabilitation significantly increases soil carbon stocks by reducing net soil CO2 emissions. Soil Use and Management, 28(2), 1250 – 1265. DOI:10.1111/sum.12790. Search in Google Scholar

Allen, D., Pringle, M. J., Bray, S., Hall, J., O´Reagain, P. O., Phelps, D., Cobon, D. H., Bloesch, P. M., and Dalal, R. C. (2013). What determines soil organic carbon stocks in the grazing lands of north-eastern Australia? Soil Research, 51(8), 695 – 706. DOI:10.1071/SR13041. Search in Google Scholar

Banwart, S. A., Black, H., Cai, Z., Gicheru, P. T., Joosten, H., Victoria, R. L., Milne, E., Noellemeyer, E., and Pascual, U. (2015). The global challenge for soil carbon. In Banwart, S.A., Noellemeyer, E., Milne, E. (Eds.), Soil Carbon. Scope Series volume 71, Cabi International, Boston, pp. 1 – 9. Available at: https://www.cabi.org/Uploads/CABI/Open-Resources/45322/chapter-1.pdf. Search in Google Scholar

Barančíková, G., Halás, J., Gutteková, M., Makovníková, J., Nováková, M., Skalský, R., and Tarasovičová, Z. (2010). Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia. Soil and Water Research, 5(1), 1 – 9. DOI:10.17221/23/2009-SWR. Search in Google Scholar

Barančíková, G., Makovníková, J., Skalský, R., Tarasovičová, Z., Nováková, M., Halas, J., Gutteková, M., and Koco, Š. (2012). Simulation of soil organic carbon changes in Slovak arable land and their environmental aspects. Soil and Water Research, 7(2), 45 – 51, DOI:10.17221/38/2011-SWR. Search in Google Scholar

Barančíková, G., Skalský, R., Koco, Š., Halas, J., Tarasovičová, Z., and Nováková, M. (2014). Farm-level modelling of soil organic carbon sequestration under climate and land use change. In Halldórsson, G., Bampa, F., Porsteinsdóttir, A.B. (Eds.) Soil carbon sequestration for climate food security and ecosystem services. Luxembourg: Publications Office of the European Union, 94-100. Available at: https://op.europa.eu/en/publication-detail/-/publication/bb316319-9bb0-41a2-875f-97ea183dced2/language-en. Search in Google Scholar

Barančíková, G., Skalský R., Koco, Š., Halas J., and Takáč J. (2022). Monitoring of soil organic carbon (SOC) in Slovakia and the use of modelling in the balance of carbon changes. In Menšík L., Kunzová E., Madaras, M. (Eds.) Book of Abstracts from the Webinar: Current Management of Agricultural Land in Changing Environmental Conditions – SOM (Soil Organic Matter). 2nd Volume [Monitoring pôdneho organického uhlíka (POC) na Slovensku a využitie modelovania pri bilancii jeho zmien. Zborník abstraktov z webinára: Současné hospodáření na zemědělské pude v měnícich sa podmínkach prostŕedí – SOM (půdni organická hmota) 2. ročník]. Praha: Crop Research Institution, pp. 12 ‒ 13. Avaiable at: https://op.europa.eu/en/publication-detail/-/publication/bb316319-9bb0-41a2-875f-97ea183d-ced2/language-en Search in Google Scholar

Bielek, P. and Jurčová, O. (2010). Methodology of soil organic matter balance and determining the need for organic fertilization of agricultural soils [Metodika bilancie pôdnej organickej hmoty a stanovenie potreby organického hnojenia poľnohospodárskych pôd]. Bratislava: Soil Science and Conservation Research Institute, 145 p. Search in Google Scholar

Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismányoky, T., Lipiec, J., Tits, M., Tóth, Z., and Kätterer, T. (2020). The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitigation and Adaptation Strategies for Global Change, 25, 929 – 952. DOI:10.1007/ s11027-020-09916-3. Search in Google Scholar

Campbel, E. E. and Paustian, K. (2015). Current developments in soil organic matter modeling and the expansion of model applications: a review. Environmental Research Letters, 10(12), 123004. DOI:10.1088/1748-9326/10/12/123004. Search in Google Scholar

Chaplot, V., Dlamini, P. and Chivenge, P. (2016). Potential of grassland rehabilitation through high density-short duration grazing to sequester atmospheric carbon. Geoderma, 271, 10 – 17. DOI:10.1016/j.geode rma.2016.02.010. Search in Google Scholar

Chevallier, T., Hamdi, S., Gallali, T., Brahim, N., Cardinel, R., Bounouara, Z., Cournac, L., Chenu, C., and Bernoux, M. (2016). Soil carbon as the indicator of Mediterranean soil quality. In Haité, H., Yazami, D. (Eds.), The Mediterranean Region under Climate Change: A scientific update, Sub-chapter 3.5.3., Marseile, pp 627–636. Available at: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/ divers16-11/010068463.pdf. Search in Google Scholar

Coleman, K., Jenkinson, D. S. (1996). RothC-26.3 - A Model for the turnover of carbon in soil. In Powlson, D. S., Smith, P., Smith, J. U. (Eds.) Evaluation of Soil Organic Matter Models. NATO ASI Series, vol. 38. Berlin, Heidelber: Springer. DOI:10.1007/978-3-642-61094-3_17. Search in Google Scholar

Coleman, K. and Jenkinson, D. S. (2005). ROTHC-26.3 A model for the turnover of carbon in soil. Model description and windows users guide, November 1999 issue (modified April, 2005), 45 pp. Available at: https://www.rothamsted.ac.uk/sites/default/files/RothC_guide_WIN.pdf. Search in Google Scholar

Conant, R. T., Cerri, C. E. P., Osborne, B. B., and Paustian, K. (2017). Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications, 27(2), 662 – 668. DOI:10.1002/eap.1473. Search in Google Scholar

Cook, G. D., Williams, R. J., Stokes, C. J., Hutley, L. B., Ash, A. J., and Richards, A. E. (2010). Managing sources and sinks of greenhouse gases in Australia’s rangelands and tropical savannas. Rangeland Ecology and Management, 63(1), 137 – 146. DOI:10.2111/08-101.1. Search in Google Scholar

Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12, 989 – 994. DOI:10.1038/s41561-019-0484-6. Search in Google Scholar

Dean, C., Wardell-Johnson, G. W. and Harper, R. (2012). Carbon management of commercial rangelands in Australia: Major pools and fluxes. Agriculture, Ecosystems & Environment, 148, 44 – 64. DOI:10.1016/j.agee.2011.11.011. Search in Google Scholar

Falloon, P., Smith, P., Coleman, K., and Marshall, S. (1998). Estimating the size of the inert organic matter pool from total soil organic carbon content for the use in the Rothamsted carbon model. Soil Biology and Biochemistry, 30(8 ‒ 9), 1207 ‒ 1211. DOI:10.1016/S0038-0717(97)00256-3. Search in Google Scholar

Falloon, P. and Smith, P. (2002). Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management, 18(2), 101 – 111. DOI:10.1111/j.1475-2743.2002. tb00227.x. Search in Google Scholar

FAO and ITPS (2021). Recarbonizing Global Soils – A technical manual of recommended sustainable soil management. Volume 4: Cropland, grassland, integrated systems and farming approaches – Case studies. Rome, FAO. DOI: 10.4060/cb6598en. Search in Google Scholar

FAO (2015). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. Available at: https://www.fao.org/3/i3794en/I3794en.pdf Search in Google Scholar

Farina, R., Marchetti, A., Francaviglia, R., Napoli, R., and DiBene, C. (2017). Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agriculture, Ecosystems & Environment, 238, 128 – 141. DOI:10.1016/j.agee.2016.08.015. Search in Google Scholar

Funes, I., Savé, R., Rovira, P., Molowny-Horas, R., Alcaniz, J. M., Ascaso, E., Herms, I., Herrero, C., Boixadera, C., Boixadera, J., and Vayreda, J. (2019). Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: Drivers and spatial variability. Science of the Total Environment, 668, 283 ‒ 294. DOI:10.1016/j.scitotenv.2019.02.317. Search in Google Scholar

Guo, L., Falloon, P., Zhou, B., Li, Y., Lin, E., and Zhang, F. (2007). Application of the RothC model to the results of long-term experiments on typical upland soils in northern China. Soil Use and Management, 23(1), 63 – 70. DOI: 10.1111/j.1475-2743.2006.00056.x. Search in Google Scholar

Hábová, M., Pospíšilová, L., Hlavinka, P., Trnka, M., Barančíková, G., Tarasovičová, Z., Takáč, J., Koco, Š., Menšík, L., and Nerušil, P. (2019). Carbon pool in soil under organic and conventional farming systems. Soil and Water Research, 14(3), 145 ‒ 152. DOI:10.17221/71/2018-SWR. Search in Google Scholar

Hassink, J. (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil, 191, 77 ‒ 87. DOI:10.1023/A:1004213929699. Search in Google Scholar

Hobley, E. U., Wilson, B. R., Wilkie, A., Gray, J. M., and Koen, T. (2015). Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil, 390 (1 ‒ 2), 111 – 127. DOI:10.1007/s11104-015-2380-1. Search in Google Scholar

Jobbagy, E. G. and Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423 – 436. DOI: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2. Search in Google Scholar

Kirschbaum, M. U. F. (2006). The temperature dependence of organic matter decomposition ‒ still a topic of debate. Soil Biology and Biochemistry, 38(9), 2510–2518. DOI:10.1016/j.soilbio.2006.01.030. Search in Google Scholar

Kizeková, M., Čunderlík, J., Dugátová, Z., Jančová, Ľ., Kanianska, R. and Makovníková, J. (2021). Carbon sequestration in grasslands [Sekvestrácia uhlíka v trávnych porastoch]. Naše Pole, 2, 50 ‒ 53. Search in Google Scholar

Kopittke, P. M., Berhe, A. A., Carrillo, Y., Cavagnaro, T. R., Chen, D., Chen, Q.-L., Román Dobarco, M., Dijkstra, F. A., Field, D. J., Grundy, M. J., He, J.-Z., Hoyle, F. C., Kögel-Knabner, I., Lam, S. K., Marschner, P., Martinez, C., McBratney, A. B., McDonald-Madden, E., Menzies, N. W., and Minasny, B. (2022). Ensuring planetary survival: The centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 52(23), 4308 – 4324. DOI:10.1080/10643389.2021.2024484. Search in Google Scholar

Koven, C., Hugelius, G., Lawrence, D. M., and Wieder, W. (2017). Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7, 817 ‒ 822. DOI:10.1038/nclimate3421. Search in Google Scholar

Kuhnel, A., Garcia-Franco, N., Wiesmeier, M., Burmeister, J., Hobley, E., Kiese, R., Dannenmann, M. and Kogel-Knabner, I. (2019). Controlling factors of carbon dynamics in grassland soils of Bavaria between 1989 and 2016. Agriculture Ecosystems.and Environmen, 280(1), 118 ‒ 128. DOI:10.1016/j.agee.2019.04.036. Search in Google Scholar

Ledo, A., Smith, P., Zerihun, A., Whiteker, J., Vincente-Vincente, J. L., Qin, Z., McNamara, N. P., Zinn, Y., Liorente, M., Liebig, M., Kuhnert, M., Dondini, M., Don, A., Diaz-Pines, E., Datta, A., Bakka, H., Aguilera, E., and Hillier, J. (2020). Changes in soil organic carbon under perennial crops. Global Change Biology, 26(7), 4158 ‒ 4168. DOI:10.1111/ gcb.15120. Search in Google Scholar

Loague, K. and Green, E. E. (1991): Statistical and graphic methods for evaluating solute transport models: overwiev and application. Journal of Contaminant Hydrology, 7(1 ‒ 2), 51 ‒ 73. DOI:10.1016/0169-7722(91)90038-3. Search in Google Scholar

Lu, X., Kelsey, K. C., Yan, Y., Sun, J., Wang, X., Cheng, G., and Neff, J. C. (2017). Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis. Ecosphere, 8(1), e01656. DOI:10.1002/ ecs2.1656. Search in Google Scholar

Maillard, E. and Angers, D. (2014). Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology, 20(2), 666 ‒ 679. DOI:10.1111/gcb.12438. Search in Google Scholar

Moinet, G. Y. K., Hijbeek, R., van Vuuren, D. P., and Giller, K. E. (2023). Carbon for soils, not soils for catbon. Global Change Biology, 29(9), 2384 ‒ 2398. DOI:10.1111/ gcb.16570. Search in Google Scholar

Mondini, C., Coleman, K. and Whitmore, A. (2012). Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001 – 2100: Potential for compost amendment. Agriculture, Ecosystems & Environment, 53, 24 – 32. DOI:10.1016/j.agee.2012.02.020. Search in Google Scholar

Morais, T., Teixeira, R. and Domingos,T. (2019). Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. PloS One, 14(9), e0222604. DOI:10.1371/ journal.pone.0222604. Search in Google Scholar

Peralta, G., Di Paolo, L., Luotto, I., Omuto, C., Mainka M., Viatkin, K., and Yigini, Y. (2022). Global soil organic carbon sequestration potential map (GSOCseq v1.1) – Technical manual. Rome: FAO. DOI:10.4060/cb2642en. Search in Google Scholar

Piñeiro, G., Paruelo, J. M., Oesterheld, M., and Jobbágy, E. G. (2010). Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology and Management 63(1), 109 – 119. DOI:10.2111/08-255.1. Search in Google Scholar

Prokopyeva, K., Romanenkov, V., Sidorenkova, N., Pavlova, V., Siptits, S., Krasilnikov, P., and (2021). The effect of crop rotation and cultivation history on predicted carbon sequestration in soils of two experimental fields in the Moscow region, Russia. Agronomy, 11(2), 226. DOI:10.3390/agronomy11020226. Search in Google Scholar

Rothamsted Carbon Model. Version 2.1 (7 April 2009): Available at: https://www.rothamsted.ac.uk/rothamsted-carbon-model-rothc. Search in Google Scholar

Schulp, C. J. E. and Verburg, P. H. (2009). Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agriculture, Ecosystems and Environment, 133(1 ‒ 2), 86 – 97. DOI:10.1016/j. agee.2009.05.005. Search in Google Scholar

Skalský, R., Koco, Š., Barančíková, G., Tarasovičová, Z., Halas, J., Koleda, P., Makovníková, J., Gutteková, M., Tobiášová, E., Gömöryová, E., and Takáč, J. (2020). Land cover and land use change-driven dynamics of soil organic carbon in North-East Slovakian croplands and grasslands between 1970 and 2013. Ekológia (Bratislava), 39(2), 159 ‒ 173. DOI:10.2478/eko-2020-0012. Search in Google Scholar

Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H. M., Klein - Gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thorney, J. H. M. and Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81(1,) 153 – 225. DOI:10.1016/ S0016-7061(97)00087-6. Search in Google Scholar

Smith, J., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R., Montanarella, L., Rounsevell, M. D. A., Reginster, I., and Ewert, F. (2005). Projected changes in mineral soil carbon of European croplands and grasslands,1990 ‒ 2080. Global Change Biology, 11(12), 2141 – 2152. DOI: 10.1111/j.1365-2486.2005.001075.x. Search in Google Scholar

Smith, J., Smith, P., Meyer, M., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M., Register, I., and Kankaanpää, S. (2006). Projected changes in mineral soil carbon of European forests,1990 ‒ 2100. Canadian Journal of Soil Science, 86, 159 ‒ 169. DOI:10.4141/S05-078. Search in Google Scholar

Smith, P., Soussana, J. F.,Angers, D., Schipper, L., Chenu, C., Rasse, D., Batjes, N., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., and Klumpp, K. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219 – 241. DOI:10.1111/ j.1365-2486.2012.02689.x. Search in Google Scholar

Soussana, J.-F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., and Arrouays, D. (2006). Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 20, 219 – 230. DOI: 10.1111/j.1475-2743.2004.tb00362.x. Search in Google Scholar

Soussana, J. F. and Lemaire, G. (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems and Environment, 190, 9 – 17. DOI:10.1016/j. agee.2013.10.012. Search in Google Scholar

Tarasovičová, Z. and Barančíková, G. (2011). A new approach to the formation of carbon inputs from permanent grasslands of Slovakia for the RothC model [Nový prístup pri tvorbe vstupov uhlíka trvalých trávnych porastov Slovenska pre model RothC]. In Proceedings of the Soil Science and Conservation Research Institute, Bratislava, 33, 184 ‒ 193. Avaiable at: https://www.vupop.sk/dokumenty/ vedecke_prace_2011.pdf. Search in Google Scholar

Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R., Shiel, R. S., Wilby, A., and Bardgett, R. D. (2016). Legacy effects of grassland management on soil carbon to depth. Global Change Biology, 22(8), 2929 – 2938. DOI:10.1111/gcb.13246. Search in Google Scholar

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lutzow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Lies, M., Garcia-Franco, N., Wollschlanger, U.,Vogel, H. J., and Kogel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales. Geoderma, 333, 149 ‒ 162. DOI:10.1016/j. geoderma.2018.07.026. Search in Google Scholar

Whitehead, D., Schipper, L., A., Pronger, J., Míoinet, G. Y. K., Mudge, P. L., Calvelo Pereira, R., Kirschbaum, M. U. F., McNally, S. R., Beare, M. H., and Camps-Arbestain, M. (2018). Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture, Ecosystems and Environment, 265, 432 ‒ 443. DOI:10.1016/j.agee.2018.06.022. Search in Google Scholar

Witt, G. B., Noël, M. V., Bird, M. I., Beeton, R. J. S., and Menzies, N. W. (2011). Carbon sequestration and biodiversity restoration potential of semi-arid mulga lands of Australia interpreted from long-term grazing exclosures. Agriculture, Ecosystems & Environment 141(1 ‒ 2), 108 – 118. DOI:10.1016/j.agee.2011.02.020. Search in Google Scholar

Wust-Galey, C., Keel, C. G. and Leifeld, J. 2020. A model based carbon inventory for Switzerland´s mineral agricultural soils using RothC. Agroscope Science, No.105, 110 p. Available at: https://www.agroscope.admin.ch/agroscope/fr/home/themes/programmes-recherche/programmes-recherche-2014-2018/biodiversite-microbienne/publikationen-peer-reviewed/_jcr_content/par/external-content.bitexternalcontent.exturl.html/aHR0cHM6Ly9p-cmEuYWdyb3Njb3BlLmNoL2l0LUNIL3B1YmxpY2/F0aW9uLzQ1Nzg5.html. Search in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other