1. bookVolume 61 (2021): Issue 1 (May 2021)
Journal Details
License
Format
Journal
eISSN
2585-8777
First Published
16 Apr 2015
Publication timeframe
2 times per year
Languages
English
access type Open Access

Relationship Between Reaction Time, Medal Winning and Performance in the 60 m Hurdle Indoor Event Before and After the Change of False Start Rule

Published Online: 08 May 2021
Volume & Issue: Volume 61 (2021) - Issue 1 (May 2021)
Page range: 72 - 85
Journal Details
License
Format
Journal
eISSN
2585-8777
First Published
16 Apr 2015
Publication timeframe
2 times per year
Languages
English
Summary

60 m hurdles races are included in the World Indoor Athletics Championships and consist the shortest hurdle race distance. Thus, it is possible that the reaction time (RT) affects the finish time (t60mH) and the rank of the hurdlers. The aims of this research were: a) to examine the relationship between RT and t60mH, b) the possible differentiation of RT: c) between the hurdlers who won a medal in World Indoor Athletics Championships (WM) and those who did not (NMW), d) between hurdlers who competed before (BRC) and after (ARC) the change of the starting rules in 2009. Analysis included 70 performances (WM: n = 28; NMW: n = 42; BRC: n = 32; ARC, n = 38). The differences between WM and NMW and BRC and ARC were examined with independent samples T-test, while the possible relationship between RT and t60mH with Pearson’s correlation. The results showed that RT was not significantly different (p < .05) between WM and NMW and between BRC and ARC. A weak, but significant, positive correlation (r = .228, p = .016) between RT and t60mH was observed. Results revealed that RT is a factor that affects t60mH. In conclusion, the essential focus on the reaction time at the starting blocks must be given during the training process.

Keywords

1. BABIC, V. & A. DELALIJA, 2009. Reaction time trends in the sprint and hurdle events at the 2004 Olympic Games: Differences between male and female athletes. In: New Studies in Athletics. 24(1), pp. 59-68. https://www.worldathletics.org/download/downloadnsa?filename=e03fa901-4dc1-417c-8f90-878df2f54f34.pdf&urlslug=reaction-time-trends-in-the-sprint-and-hurdle. Search in Google Scholar

2. BEDINI, R., 2016. Technical ability in the women’s 100m hurdles. In: New Studies in Athletics. 31(3-4), pp. 117-132. https://www.worldathletics.org/download/downloadnsa?filename=aa261a4e-3c9c-4048-8dcbe3ed664b1e43.pdf&urlslug=technical-ability-in-the-womens-100m-hurdles. Search in Google Scholar

3. BEZODIS, I. N., A. BRAZIL, H. C. VON LIERS UND WILKAU, et al., 2019a. World-class male sprinters and high hurdlers have similar start and initial acceleration techniques. In: Frontiers in Sports and Active Living. 1, 23. https://doi.org/10.3389/fspor.2019.00023.10.3389/fspor.2019.00023773964533344947 Search in Google Scholar

4. BEZODIS, N. E., S. WILLWACHER & A. I. T. SALO, 2019b. The biomechanics of the track and field sprint start: a narrative review. In: Sports Medicine. 49(9), pp. 1345-1364. https://doi.org/10.1007/s40279-019-01138-1.10.1007/s40279-019-01138-1668454731209732 Search in Google Scholar

5. BROSNAN, K. C., K. HAYES & A. J. HARRISON, 2017. Effects of false-start disqualification rules on response-times of elite-standard sprinters. In: Journal of Sports Sciences. 35(10), pp. 929-935. https://doi.org/10.1080/02640414.2016.1201213.10.1080/02640414.2016.120121327351870 Search in Google Scholar

6. BROWN, A. M., Z. R. KENWELL, B. K. V. MARAJ & D. F. COLLINS, 2008. Go” signal intensity influences the sprint start. In: Medicine and Science in Sports and Exercise. 40(6), pp. 1142-1148. https://doi.org/10.1249/MSS.0b013e318169770e1. Search in Google Scholar

7. COLLET, C., 1999. Strategic aspects of reaction time in world-class sprinters. In: Perceptual and Motor Skills. 88(1), pp. 65-75. https://doi.org/10.2466/pms.1999.88.1.65.10.2466/pms.1999.88.1.6510214633 Search in Google Scholar

8. DELALIJA, A. & V. BABIC, 2008. Reaction time and sprint results in athletics. In: International Journal of Performance Analysis in Sport. 8(2), pp. 67-75. https://doi.org/10.1080/24748668.2008.11868436.10.1080/24748668.2008.11868436 Search in Google Scholar

9. DITROLO, M. & A. KILDING, 2004. Has the new false start rule affected the reaction time of elite sprinters? In: New Studies in Athletics. 19(1), pp. 13-19. https://www.worldathletics.org/download/downloadnsa?filename=6101da77-01a4-4725-a22e-fe2a6d55d388.pdf&urlslug=has-the-new-false-start-rule-affected-the-rea. Search in Google Scholar

10. GONZÁLEZ-FRUTOS, P., S. VEIGA, J. MALLO & E. NAVARRO, 2019. Spatiotemporal comparisons between elite and high-level 60 m hurdlers. In: Frontiers in Psychology. 10, 2525. https://doi.org/10.3389/fpsyg.2019.02525.10.3389/fpsyg.2019.02525687263531803093 Search in Google Scholar

11. GONZÁLEZ-FRUTOS, P., S. VEIGA, J. MALLO & E. NAVARRO, 2020. Evolution of the hurdle-unit kinematic parameters in the 60 m indoor hurdle race. In: Applied Sciences. 10(21), 7807. https://doi.org/10.3390/app10217807.10.3390/app10217807 Search in Google Scholar

12. GURSES, V. V. & O. KAMIS, 2019. The relationship between reaction time and 60 m performance in elite athletes. In: Journal of Education and Training Studies. 6(12a), pp. 64–69. https://doi.org/10.11114/jets.v6i12a.3931.10.11114/jets.v6i12a.3931 Search in Google Scholar

13. HARLAND, M. J. & J. R. STEELE, 1997. Biomechanics of the sprint start. In: Sports Medicine, 23(1), pp.11–20. https://doi.org/10.2165/00007256-199723010-00002.10.2165/00007256-199723010-000029017856 Search in Google Scholar

14. HAUGEN, T. A., S. SHALFAWI & E. TØNNESSEN, 2013. The effect of different starting procedures on sprinters’ reaction time. In: Journal of Sports Sciences. 31(7), pp. 699-705. https://doi.org/10.1080/02640414.2012.746724.10.1080/02640414.2012.74672423199011 Search in Google Scholar

15. HAEUGEN, T. & M. BUCHHEIT, 2016. Sprint running performance monitoring: methodological and practical considerations. In: Sports Medicine. 46(5), pp. 641-656. https://doi.org/10.1007/s40279-015-0446-0.10.1007/s40279-015-0446-026660758 Search in Google Scholar

16. ILLE, A., I. SELIN, D. MANH-CUONG & B. THON, 2013. Attentional focus effects on sprint start performance as a function of skill level. In: Journal of Sports Sciences. 31(15), pp. 1705-1712. https://doi.org/10.1080/02640414.2013.797097.10.1080/02640414.2013.79709723710928 Search in Google Scholar

17. IWASAKI, R., H. SHINKAI & N. ITO, 2020. How hitting the hurdle affects performance in the 110 m hurdles. In: ISBS Proceedings Archive. 38(1), pp. 268-271. https://commons.nmu.edu/isbs/vol38/iss1/69. Search in Google Scholar

18. JUHAS, I., M. MATIC & N. JANKOVIC, 2015. Comparative analysis of reaction time of elite sprinters at the world championships in 2013 and 2015. In: Godišnjak Fakulteta Sporta i Fizičkog Vaspitanja. 21, pp. 43-52. https://doi.org/10.5937/gfsfv1521043J.10.5937/gfsfv1521043J Search in Google Scholar

19. KAISIDOU, V., L. GAITANIDIS & V. PANOUTSAKOPOULOS, 2021. Relationships between technique index and performance in 60-1 m hurdle indoor races in elite male heptathletes. In: Trends in Sport Sciences (in press). Search in Google Scholar

20. KOMI, P. V., M. ISHIKAWA & J. SALMI, 2009. IAAF Sprint Start Research Project: Is the 100 ms limit still valid? In: New Studies in Athletics. 24(1), pp. 37-47. https://www.worldathletics.org/download/downloadnsa?filename=af62a171-5e94-4178-a30d-55a0b88d3f1d.pdf&urlslug=iaaf-sprint-start-research-project-is-the-100. Search in Google Scholar

21. KUITUNEN, S. & S. POON, 2010. Race pattern of 60-m hurdles in world-class sprint hurdlers: A biomechanical analysis of World Indoor Championships 2010. In: JENSEN R., W. EBBEN, E. PETUSHEK, C. RICHTER, & K. ROEMER (Eds.), Proceedings of the 28th International Conference in Sports Biomechanics, pp. 728–729. Marquette, MI: I.S.B.S. https://ojs.ub.unikonstanz.de/cpa/article/view/4572. Search in Google Scholar

22. LIPPS, D. B., A. T. GALECKI & J. A. ASHTON-MILLER, 2011. On the implications of a sex difference in the reaction times of sprinters at the Beijing Olympics. In: PLoS ONE. 6(10), e26141. https://doi.org/10.1371/journal.pone.0026141.10.1371/journal.pone.0026141319838422039438 Search in Google Scholar

23. LOPEZ DEL AMO, J., M. RODRIGURZ, D. HILL & J. GONZALEZ, 2018. Analysis of the start to the first hurdle in 110 m hurdles at the IAAF World Athletics Championships Beijing 2015. In: Journal of Human Sport and Exercise. 13(3), pp. 504-517. https://doi.org/10.14198/jhse.2018.133.03.10.14198/jhse.2018.133.03 Search in Google Scholar

24. MAJUMDAR, A. S. & R. A. ROBERGS, 2011. The science of speed: Determinants of performance in the 100 m sprint. In: International Journal of Sports Science & Coaching. 6(3), pp. 479-493. https://doi.org/10.1260/1747-9541.6.3.479.10.1260/1747-9541.6.3.479 Search in Google Scholar

25. MERO, A., S. KUITUNEN, M. HARLAND, H. KYROLAINEN & P. V. KOMI, 2006. Effects of muscle–tendon length on joint moment and power during sprint starts. In: Journal of Sports Sciences. 24(2), pp. 165-173. https://doi.org/10.1080/02640410500131753.10.1080/0264041050013175316368626 Search in Google Scholar

26. MILLOZ, M., K. HAYES & A. J. HARRISON, 2021. Sprint Start Regulation in Athletics: A Critical Review. In: Sports Medicine. 51(1), pp. 21-31. https://doi.org/10.1007/s40279-020-01350-4.10.1007/s40279-020-01350-433125639 Search in Google Scholar

27. MITAŠÍK, P., L. DOLEŽAJOVÁ, A. LEDNICKÝ & D. VÉGH, 2020. Changes in the start reaction times in the 200 m run at the world championships after the tightening of false start rule. In: Acta Facultatis Educationis Physicae Universitatis Comenianae. 60(2), pp. 207-216. https://doi.org/10.2478/afepuc-2020-0017.10.2478/afepuc-2020-0017 Search in Google Scholar

28. MULLER, H. & H. HOMMEL, 1997. Biomechanical research project at the VIth World Championships in Athletics, Athens 1997. In: New Studies in Athletics. 12(2-3), pp. 43-73. https://www.worldathletics.org/download/downloadnsa?filename=4b65d42f-9bce-4333-92d8-52e8e1be2b33.pdf&urlslug=biomechanical-research-project-at-the-vith-wo. Search in Google Scholar

29. NAGAHARA, R., S. GLEADHILL & Y. OHSIMA, 2020. Improvement in sprint start performance by modulating an initial loading location on the starting blocks. In: Journal of Sports Sciences. 38(21), pp. 2437-2445. https://doi.org/10.1080/02640414.2020.1787698.10.1080/02640414.2020.178769832608346 Search in Google Scholar

30. PANOUTSAKOPOULOS, V., A. S. THEODOROU, M. C. KOTZAMANIDOU, E. FRAGKOULIS, A. SMIRNIOTOU & I. A. KOLLIAS, 2020. Gender and event specificity differences in kinematical parameters of a 60 m hurdles race. In: International Journal of Performance Analysis in Sport. 20(4), pp. 668-682. https://doi.org/10.1080/24748668.2020.1776064.10.1080/24748668.2020.1776064 Search in Google Scholar

31. PANTELI, F., A. SMIRNIOTOU & A. THEODOROU, 2020. Kinematic parameters of hurdle clearance motion in young, novice athletes. In: ISBS Proceedings Archive. 38(1),75. https://commons.nmu.edu/isbs/vol38/iss1/75. Search in Google Scholar

32. PILIANIDIS, T., A. KASABALIS, N. MANTZOURANIS & A. MAVVIDIS, 2012a. Start reaction time and performance at the sprint events in the Olympic Games. In: Kinesiology. 44(1), pp. 67–72. https://hrcak.srce.hr/83585.10.1080/24748668.2012.11868587 Search in Google Scholar

33. PILIANIDIS, T., N. MANTZOURANIS & A. KASABALIS, 2012b. Start reaction time and performance at the sprint events in World Athletic Championships. In: International Journal of Performance Analysis in Sport. 12(1), pp. 112-118. https://doi.org/10.1080/24748668.2012.11868587.10.1080/24748668.2012.11868587 Search in Google Scholar

34. SCHOT, P. K. & K. M. KNUTZEN, 1992. A biomechanical analysis of four sprint start positions. In: Research Quarterly for Exercise and Sport. 63(2), pp. 137-147. https://doi.org/10.1080/02701367.1992.10607573.10.1080/02701367.1992.106075731585060 Search in Google Scholar

35. STADLER, K. M., W. WOLDD & J. SCHULER, 2020. On Your Mark, Get Set, Self-Control, Go: A differentiated view on the cortical hemodynamics of self-control during sprint start. In: Brain Sciences. 10(8), 494. https://doi.org/10.3390/brainsci10080494.10.3390/brainsci10080494746361732751179 Search in Google Scholar

36. STEIN, N., 2020. Reflections on a change in the height of the hurdles in the women’s sprint hurdles event. In: New Studies in Athletics. 15(2), pp. 15-20. https://www.worldathletics.org/download/downloadnsa?filename=b246e5ed-97cf-4670-9000-eb39843eb76d.pdf&urlslug=reflections-on-a-change-in-the-height-of-the. Search in Google Scholar

37. TØNNESSEN, E., T. HAUGEN & S. SHALFAWI, 2013. Reaction time aspects of elite sprinters in athletic world championships. In: Journal of Strength and Conditioning Research. 27(4), pp. 885-92. https://doi.org/10.1519/JSC.0b013e31826520c3.10.1519/JSC.0b013e31826520c322739331 Search in Google Scholar

38. TSIOKANOS, A., D. TSAOPOULOS, A. GIAVROGLOU & E. TSAROUCHAS, 2018. Race pattern of men’s 110-m hurdles: Time analysis of Olympic hurdle performance. In: Biology of Exercise. 14(2), pp. 15-36. https://doi.org/10.4127/jbe.2018.0136.10.4127/jbe.2018.0136 Search in Google Scholar

39. WALKER, J., L. POLLITT, G. P. PARADISIS, I. BEZODIS, A. BISSAS & S. MERLINO, 2019. Biomechanical Report for the IAAF World Indoor Championships 2018: 60 Metres Hurdles Men. Birmingham, UK: International Association of Athletics Federations. https://www.worldathletics.org/download/download?filename=0d4bc5cd-4a8b-4faa-81e0-898e90a091c5.pdf&urlslug=Men%E2%80%99s%2060m%20hurdles%20%E2%80%93%202018%20IAAF%20Indoor%20Championships%20Biomechanical%20Report. Search in Google Scholar

40. WORLD ATHLETICS, 2019. Competition and Technical Rules (2020 edition). Monaco: World Athletics. https://www.worldathletics.org/about-iaaf/documents/book-of-rules. Search in Google Scholar

41. ZHANG, J., X. Y. LIN, & S. ZHANG, 2021. Correlation analysis of sprint performance and reaction time based on double logarithm model. Complexity. 6633326. https://doi.org/10.1155/2021/6633326.10.1155/2021/6633326 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo