1. bookVolume 22 (2022): Issue 3 (September 2022)
Journal Details
License
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English
Open Access

g-C3N4/ Bio–Synthesized Silver Nanoparticle for Fluorometric Bio-Sensing of Acetylcholinesterase and Malathion

Published Online: 08 Oct 2022
Volume & Issue: Volume 22 (2022) - Issue 3 (September 2022)
Page range: 23 - 40
Journal Details
License
Format
Journal
eISSN
2083-4799
First Published
23 Sep 2008
Publication timeframe
4 times per year
Languages
English

1. FEPA (The Federal Environmental Protection Authority). 2004. Environmental Impact Assessment Guideline on Pesticides. FEPA, Addis Ababa, Ethiopia. Search in Google Scholar

2. Chen, C., Qian, Y., Chen, Q., Tao, C. and Li, C. 2011. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control, 22: 1114–1120. Search in Google Scholar

3. Ariese, F., Ernst, W.H.O. and Sijm, D.T. 2001. Natural and synthetic organic compounds in the Environment a symposium report. Environmental Toxicology and Pharmacology, 10: 65–80. Search in Google Scholar

4. Ebrahima, S., El-Raeyb, R., Hefnawya, A., Ibrahimb, H., Solimana, M., and Abdel-Fattah T.M. 2014. Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of Malathion. Synthetic Metals, 190:13–19.10.1016/j.synthmet.2014.01.021 Search in Google Scholar

5. Andreescu, S. and Marty, J.L. 2006. Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomolecular Engineering, 23: 1–15. Search in Google Scholar

6. Pohanka, M. 2014. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. International Journal of Molecular Sciences, 15: 9809–9825. Search in Google Scholar

7. Pedrosa, V.A., Caetano, J., Machado, S.A.S. and Bertotti, M. 2008. Determination of parathion and carbaryl pesticides in water and food samples using a self assembled monolayer/acetylcholinesterase electrochemical biosensor. Sensors, 8: 4600–4610. Search in Google Scholar

8. Sukirtha, T.H. and Usharani, M.V. 2013. Gas chromatography-mass spectrometry determination of organophosphate pesticide residues in water of the irrigation canals the North Zone, Tamil Nadu/India. International Journal of Current Microbiology and Applied Science, 2(8): 321–329. Search in Google Scholar

9. Guan, H., Brewer, W. E. and Garris, S. T. 2010. Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. Journal of Chromatography A, 1217: 1867–1874.10.1016/j.chroma.2010.01.04720144461 Search in Google Scholar

10. Petropoulou, S.S.E., Gikas, E., Tsarbopoulos, A. and Siskos, P.A. 2006. Gas chromatographic– tandem mass spectrometric method for the quantitation of carbofuran, carbaryl and their main metabolites in applicators’ urine. Journal of Chromatography A, 1108(1): 99–110.10.1016/j.chroma.2005.12.05816442549 Search in Google Scholar

11. Delmulle, B.S., De Saeger, S.M., Sibanda, L., Barna-Vetro, I. and Van Peteghem, C.H. 2005. Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. Journal of Agricultural and Food Chemistry, 53(9): 3364–3368.10.1021/jf040480415853373 Search in Google Scholar

12. Kalele, S.A., Kundu, A.A., Gosavi, S.W., Deobagkar, D.N., Deobagkar, D.D. and Kulkarni, S.K., 2006. Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small, 2(3): 335–338.10.1002/smll.20050028617193045 Search in Google Scholar

13. Zhou, H.K., Gan, N., Hou, J.G., Li, T.H. and Cao, Y.T. 2012. Enhanced electrochemiluminescence employed for the selective detection of methyl parathion based on a zirconia nanoparticle film modified electrode. Analytical Sciences, 28: 267–273. Search in Google Scholar

14. Liang, M., Fan, K., Pan, Y., Jiang, H., Wang, F., Yang, D., Lu, D., Feng, J., Zhao, J. and Yang, L. 2013. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Analytical Chemistry, 85: 308–312. Search in Google Scholar

15. Ahmad, B.M., Lim, J.J., Shameli, K., Ibrahim, N.A. and Tay, M.Y. 2011. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 16(9): 7237–7248.10.3390/molecules16097237626413421869751 Search in Google Scholar

16. Maiti, S., Barman, G. and Konar Laha, J. 2014. Biosynthesized Gold nanoparticles as catalyst. International Journal of Scientific and Engineering Research, 5(7): 1229–1230. Search in Google Scholar

17. Huang, X., Wu, H., Liao, X. and Shi, B. 2010. One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chemistry, 12(3): 395–399.10.1039/B918176H Search in Google Scholar

18. Wang, C.I., Chen, W.T. and Chang, H.T. 2012. Enzyme mimics of Au/Ag nanoparticles for fluorescent detection of acetylcholine. Analytical Chemistry, 84: 9706–9712. Search in Google Scholar

19. Huang, H., Chen, R., Ma, J., Yan, L., Zhao, Y., Wang, Y., Zhang, W., Fan, J. and Chen, X. 2014. Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chemical Communications, 50(97): 15415–15418.10.1039/C4CC06659F25350907 Search in Google Scholar

20. Lee, E. Z., Jun, Y. S., Hong, W. H., Thomas, A. and Jin, M. M. 2010. Cubic mesoporous graphitic carbon (IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angewandte Chemie International Edition, 49: 9706–9710. Search in Google Scholar

21. Zhuang, Q., Sun, L. and Yongnian, N. 2017. One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuricions. Talanta, 164: 458–462.10.1016/j.talanta.2016.12.00428107958 Search in Google Scholar

22. Tian, J., Liu, Q., Asiri, A. M., Al-Youbi, A.O. and Sun, X. 2013. Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical Chemistry, 85: 5595–5599.10.1021/ac400924j23650957 Search in Google Scholar

23. Zhang, S., Li, J., Zeng, M., Xu, J., Wang, X. and Hu, W. 2014. Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale, 6(8): 4157–4162.10.1039/c3nr06744k24604235 Search in Google Scholar

24. Maiti, S., Barman, G. and Laha, J.K. 2016. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Applied Nanoscience, 6(4):529–538.10.1007/s13204-015-0452-4 Search in Google Scholar

25. Bisetty, K., Sabela, M.I., Khulu, S., Xhakaza, M. and Ramsarup, L. 2011. Multivariate optimization of voltammetric parameters for the determination of total polyphenolic content in wine samples using an immobilized biosensor. International Journal of Electrochemical, 6: 3631–3643. Search in Google Scholar

26. Assis, C.R., CASTRO, P.F.and Bezerra, R.S. 2010. Characterization of acetylcholinesterase from the brain of the amazonian tambaqui (colossoma macropomum) and in vitro effect of organophosphorus and carbamate pesticides. Environmental Toxicology and Chemistry, 29(10): 2243–2248.10.1002/etc.27220872688 Search in Google Scholar

27. Anastassiades, M., Lehotay, S.J., Stajnbaher, D and Schenich, F.J. 2003. Fast and easy multi residue method employing acetonitrile extraction/partitioning dispersive and solidphase extraction for the determination pesticides residue in produce. Journal of AOAC International, 86(2): 412–418.10.1093/jaoac/86.2.412 Search in Google Scholar

28. Yang, C., Wang, X., Liu, H., Ge, S., Yu, J. and Yan, M. 2017. On–off–on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride (g-C3N4)–Cu2+ strategy. New Journal of Chemistry, 41(9): 3374–3379.10.1039/C7NJ00098G Search in Google Scholar

29. Alim, N.S., Lintang, H.O. and Yuliati, L. 2015. Fabricated metal-free carbon nitride characterizations for fluorescence chemical sensor of nitrate ions. Journal Technologi (Sciences & Engineering), 76 (13): 1–6.10.11113/jt.v76.5812 Search in Google Scholar

30. Ye, L., Liu, J., Jiang, Z., Peng, T. and Zan, L. 2013. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 142: 1–7. Search in Google Scholar

31. Maiti, S., Barman, G. and Konar Laha J. 2016. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver Nanoparticles. Applied Nanoscience, 6:529–538.10.1007/s13204-015-0452-4 Search in Google Scholar

32. Song. J.Y., Jang H.K. and Kim, B.S. 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochemistry, 44(10):1133–1138.10.1016/j.procbio.2009.06.005 Search in Google Scholar

33. Kim J.S. and Quang D.T. 2007. Calixarene-derived fluorescent probes. Chemical Review, 107: 3780–3799. Search in Google Scholar

34. Zhang, Y.; Hei, T.; Cai, Y.; Gao, Q.; Zhang, Q. 2012. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle. Analytical Chemistry, 84: 2830–2836. Search in Google Scholar

35. Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. 2012. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Analytical Chemistry, 84: 4185–4191. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo