1. bookVolume 70 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Promoter Polymorphisms of the Canine SCL11A1 Gene are Correlated with Susceptibility to Canine Leishmaniosis

Published Online: 18 Sep 2020
Volume & Issue: Volume 70 (2020) - Issue 3 (September 2020)
Page range: 305 - 315
Accepted: 15 Jun 2020
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

In enzootic areas the prevalence estimates of canine leishmaniosis are high whereas only a proportion of dogs exhibit the clinical disease, thus implying a role of host genetics. The type of the triggered immune response remains a crucial determining factor for the diverse outcome of this parasitosis. The Solute Carrier Family 11 member 1 (SLC11A1) is a protein, which plays a central role in macrophage function and is implicated in the regulation of the immune response. An extended study with 73 resistant and 75 susceptible to Leishmania dogs was conducted. A fragment of the promoter region of the canine SLC11A1 gene was amplified and digested providing the different genotypes for three previously recorded single-nucleotide polymorphisms (SNPs) (SNP1 T151C, SNP2 Α180G, SNP3 G318A) for each animal. Statistical analyses revealed that SNP2 Α180G in heterozygosity (AG) as well as SNP3 G318A in homozygosity (AA) are correlated with susceptibility to canine leishmaniosis.

Keywords

1. Solano-Gallego L, Llull J, Ramos G, Riera C, Arboix M, Alberola J, Ferrer L: The Ibizian hound presents a predominantly cellular immune response against natural Leishmania infection. Vet Parasitol 2000, 90:37-45.10.1016/S0304-4017(00)00223-5Search in Google Scholar

2. Sideris V, Papadopoulou G, Dotsika E, Karagouni E: Asymptomatic canine leishmaniasis in Greater Athens area, Greece. Eur J of Epidemiol 1999, 15:271-276.10.1023/A:1007526401175Search in Google Scholar

3. Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L: Canine leishmaniosis - new concepts and insights on an expanding zoonosis: part one. Trends Parasitol 2008, 24:324-330.10.1016/j.pt.2008.04.001Search in Google Scholar

4. Barbieri CL: Immunology of canine leishmaniasis. Parasite Immunol 2008; 28:329-337.Search in Google Scholar

5. Quinnell RJ, Kennedy LJ, Barnes A, Courtenay O, Dye C, Garcez LM, Shaw MA, Carter SD, Thomson W, Ollier WE: Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics 2003, 55:23-28.10.1007/s00251-003-0545-1Search in Google Scholar

6. Symeonidou I, Hatzistilianou M, Papadopoulos E, Dovas CI, Karagouni E, Pappa S, Pantzartzi C, Kourelis A, Frydas S: Susceptibility and resistance to canine leishmaniosis is associated to polymorphisms of the canine TNF-α gene. Eur J of Inflamm 2011, Vol. 9:23-29.10.1177/1721727X1100900104Search in Google Scholar

7. Canonne-Hergaux F, Gruenheid S, Govoni G, Gros P: The SLC11A1 protein and its role in resistance to infection and macrophage function. Proc Assoc Am Physicians 1999, 111:283-289.10.1046/j.1525-1381.1999.99236.xSearch in Google Scholar

8. Blackwell JM, Searle S, Mohamed H, White JK: Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/SLC11A1/Nramp1 gene story. Immunol Lett 2003, 85:197-203.10.1016/S0165-2478(02)00231-6Search in Google Scholar

9. Rojas M, Olivier M, Gros P, Barrera LF, Garcia LF: TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J Immunol 1999, 162:6122-6131.Search in Google Scholar

10. Govoni G, Gros P: Macrophage SLC11A1 and its role in resistance to microbial infections. Inflamm Res 1998, 47:277-284.10.1007/s0001100503309719491Search in Google Scholar

11. Huynh C, Andrews NW: Iron acquisition within host cells and the pathogenicity of Leishmania. Cell Microbiol 2008, 10:293-300.10.1111/j.1462-5822.2007.01095.x236699818070118Search in Google Scholar

12. Altet L, Francino O, Solano-Gallego L, Renier C, Sanchez A: Mapping and sequencing of the canine SLC11A1 gene and identification of mutations in leishmaniasis-susceptible dogs. Infect Immun 2002, 70:2763-2771.10.1128/IAI.70.6.2763-2771.200212796512010961Search in Google Scholar

13. Sanchez-Robert E, Altet L, Sanchez A, Francino O: Polymorphism of SLC11A1 (Nramp1) gene and canine leishmaniasis in a case-control study. J Hered 2005, 96:755-758.10.1093/jhered/esi11116251521Search in Google Scholar

14. Sanchez-Robert E, Altet L, Utzet-Sadurni M, Giger U, Sanchez A, Francino O: SLC11A1 (formerly Nramp1) and susceptibility to canine visceral leishmaniasis. Vet Res 2008, 39:36.10.1051/vetres:2008013Search in Google Scholar

15. Kouam MK, Diakou A, Kantzoura V, Papadopoulos E, Gajadhar AA, Theodoropoulos G: A seroepidemiological study of exposure to Toxoplasma, Leishmania, Echinococcus and Trichinella in equids in Greece and analysis of risk factors. Vet Parasitol 2010, 170: 170–175.10.1016/j.vetpar.2010.02.00420197215Search in Google Scholar

16. Leclercq V, Lebastard M, Belkaid Y, Louis J, Milon G: The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. J Immunol 1996, 157:4537-4545.Search in Google Scholar

17. Searle S, Blackwell JM: Evidence for a functional repeat polymorphism in the promoter of the human SLC11A1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet 1999, 36:295-299.10.1136/jmg.36.4.295Search in Google Scholar

18. El-SafiS, Kheir MM, Bucheton B, Argiro L, Abel L, Dereure J, Dedet JP, Dessein A: Genes and environment in susceptibility to visceral leishmaniasis. C R Biol 2006, 329:863-870.10.1016/j.crvi.2006.07.00717067929Search in Google Scholar

19. Ejghal R, Hida M, Idrissi ML, Hessni AE, Lemrani M: SLC11A1 polymorphisms and susceptibility to visceral leishmaniasis in Moroccan patients. Acta Trop 2014, 140130-136.10.1016/j.actatropica.2014.08.01325151047Search in Google Scholar

20. Hernández-Rivera MP, Ramírez-Ramírez A, Chiñas-Pérez A, Monroy-Ostria A, Cancino-Díaz ME. Hernández-Montes: NRAMP1 Polymorphisms like Susceptibility Marker in Mexican Focus of Cutaneous Leishmaniasis. Biomed Res Int Vol 2016, Article ID 7951285.10.1155/2016/7951285508833027830154Search in Google Scholar

21. Fattahi-Dolatabadi M, Mousavi T, Mohammadi-Barzelighi H, Irian S, Bakhshi B, Nilforoushzadeh MA, Shirani-Bidabadi L, Hariri MM, Ansari N, Akbari NJ: NRAMP1 gene polymorphisms and cutaneous leishmaniasis: An evaluation on host susceptibility and treatment outcome. J Vector Borne Dis 2016, 53:257-263.Search in Google Scholar

22. Bueno R, Carvalho Neta AV, Xavier MN, Oliveira RG, Diniz SA, Melo MN, Santos RL: cDNA sequencing and expression of SLC11A1 (Nramp1) in dogs phenotypically resistant or susceptible to visceral leishmaniasis. Vet Immunol Immunopathol 2009, 127:332-339.10.1016/j.vetimm.2008.10.33519084282Search in Google Scholar

23. Soo SS, Villarreal-Ramos B, Anjam Khan CM, Hormaeche CE, Blackwell JM: Genetic control of immune response to recombinant antigens carried by an attenuated Salmonella typhimurium vaccine strain: SLC11A1 influences T-helper subset responses and protection against leishmanial challenge. Infect Immun 1998, 66:1910-1917.10.1128/IAI.66.5.1910-1917.19981081439573069Search in Google Scholar

24. Boonstra A, Rajsbaum R, Holman M, Marques R, Asselin-Paturel C, Pereira JP, Bates EE, Akira S, Vieira P, Liu YJ, Trinchieri G, O’Garra A: Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals. J Immunol 2006, 177:7551-7558.10.4049/jimmunol.177.11.755117114424Search in Google Scholar

25. O’Garra A, Murphy KM: From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce T(H)1 development. Nat Immunol 2009, 10:929-932.10.1038/ni0909-92919692989Search in Google Scholar

26. Stober CB, Brode S, White JK, Popoff JF, Blackwell JM: SLC11A1, formerly Nramp1, is expressed in dendritic cells and influences major histocompatibility complex class II expression and antigen-presenting cell function. Infect Immun 2007, 75:5059-5067.10.1128/IAI.00153-07204452917620357Search in Google Scholar

27. Lang T, Prina E, Sibthorpe D, Blackwell JM: SLC11A1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation. Infect Immun 1997, 65:380-386.10.1128/iai.65.2.380-386.19971746069009286Search in Google Scholar

28. Sypek JP, Chung CL, Mayor SE, Subramanyam JM, Goldman SJ, Sieburth DS, Wolf SF, Schaub RG: Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med 1993, 177:1797-1802.10.1084/jem.177.6.179721910368098733Search in Google Scholar

29. Wojciechowski W, DeSanctis J, Skamene E, Radzioch D: Attenuation of MHC class II expression in macrophages infected with Mycobacterium bovis bacillus Calmette-Guerin involves class II transactivator and depends on the Nramp1 gene. J Immunol 1999, 163:2688-2696.Search in Google Scholar

30. Georges AB, Benayoun BA, Caburet S, Veitia RA: Generic binding sites, generic DNA binding domains: where does specific promoter recognition come from? FASEB J. 2010; 24:346-56.10.1096/fj.09-14211719762556Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo