1. bookVolume 69 (2019): Issue 3 (September 2019)
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Candidatus Neoehrlichia sp. (FU98) and Borrelia burgdorferi Sensu Lato in Red Foxes (Vulpes vulpes) from Serbia

Published Online: 24 Sep 2019
Volume & Issue: Volume 69 (2019) - Issue 3 (September 2019)
Page range: 312 - 324
Received: 18 Apr 2019
Accepted: 23 Aug 2019
Journal Details
License
Format
Journal
eISSN
1820-7448
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Human activities such as deforestation, urbanization, and environmental pollution lead to a reduction in the spatial boundary between wild animals, domestic animals and humans. These activities increase the risk for the emergence of pathogens from the sylvatic cycle in the population of domestic animals and humans. Foxes are recognized as potential reservoirs for a number of bacterial pathogens of medical and public health concern. The aim of the present study was to investigate the prevalence and spatial distribution of bacterial tick-borne pathogens from the Anaplasmataceae family, Borrelia burgdorferi sensu lato (s.l.), Rickettsia spp., Coxiella burnetii, Francisella tularensis, Bartonella spp., in the red fox population from Serbia and to discuss the obtained results from the epidemiological point of view. Legally hunted red foxes (Vulpes vulpes) from 14 localities in Serbia were included in the study and spleen samples from 129 animals were tested with conventional PCR assays for the presence of bacterial tick-borne pathogens. DNA of Candidatus Neoehrlichia sp. (FU98), Borrelia burgdorferi sensu stricto, Borrelia lusitaniae, and Borrelia garinii was detected in 6 (4.7%), 1 (0.8%), 2 (1.6%) and 1 (0.8%) animals, respectively. Co-infection by Candidatus Neoehrlichia sp. (FU98) and B. garinii was detected in one animal. All samples were negative for other tested bacterial tick-borne pathogens. The results of the present study indicate the potential role of foxes in natural cycles of Candidatus Neoehrlichia sp. (FU98) and causative agents of Lyme borreliosis in the investigated areas. Further research is required to elucidate the role of foxes in the epidemiology of these and other tick-borne zoonotic pathogens in the Republic of Serbia.

Keywords

1. Aguirre AA: Wild canids as sentinels of ecological health: a conservation medicine perspective. Parasit Vectors 2009, 2 (Suppl 1):S7.10.1186/1756-3305-2-S1-S7267939919426446Search in Google Scholar

2. Tomassone L, Berriatua E, De Sousa R, Duscher GG, Mihalca AD, Silaghi C, Sprong H, Zintl A: Neglected vector-borne zoonoses in Europe: Into the wild. Vet Parasitol 2018, 251:17–26.10.1016/j.vetpar.2017.12.01829426471Search in Google Scholar

3. Jongejan F, Uilenberg G: The global importance of ticks. Parasitology 2004, 129:S3–14.10.1017/S0031182004005967Search in Google Scholar

4. Colwell DD, Dantas-Torres F, Otranto D: Vector-borne parasitic zoonoses: Emerging scenarios and new perspectives. Vet Parasitol 2011, 182:14–21.10.1016/j.vetpar.2011.07.01221852040Search in Google Scholar

5. Duscher GG, Fuehrer H-P, Kübber-Heiss A: Fox on the run - molecular surveillance of fox blood and tissue for the occurrence of tick-borne pathogens in Austria. Parasit Vectors 2014, 7:521.10.1186/PREACCEPT-1542240345144663Search in Google Scholar

6. Otranto D, Cantacessi C, Pfeffer M, Dantas-Torres F, Brianti E, Deplazes P, Genchi C, Guberti V., Capelli G: The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Vet Parasitol 2015, 213:12–23.10.1016/j.vetpar.2015.04.02226003669Search in Google Scholar

7. Ebani VV, Verin R, Fratini F, Poli A, Cerri D: Molecular survey of Anaplasma phagocytophilum and Ehrlichia canis in red foxes (Vulpes vulpes) from central Italy. J Wildl Dis 2011, 47:699–703.10.7589/0090-3558-47.3.69921719836Search in Google Scholar

8. Hulinska D, Langrova K, Pejcoch M, Pavlasek I: Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. Apmis 2004, 112:239–247.10.1111/j.1600-0463.2004.apm11204-0503.x15233638Search in Google Scholar

9. Härtwig V, von Loewenich FD, Schulze C, Straubinger RK, Daugschies A, Dyachenko V: Detection of Anaplasma phagocytophilum in red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) from Brandenburg, Germany. Ticks Tick Borne Dis 2014, 5:277–80.10.1016/j.ttbdis.2013.11.00124512760Search in Google Scholar

10. Cardoso L, Gilad M, Cortes, H, Nachum-Biala Y, Lopes A, Vila-Viçosa M, Simões M, Rodrigues PA, Baneth G: First report of Anaplasma platys infection in red foxes (Vulpes vulpes) and molecular detection of Ehrlichia canis and Leishmania infantum in foxes from Portugal. Parasit Vectors 2015, 8:144.10.1186/s13071-015-0756-y436989325889750Search in Google Scholar

11. Torina A, Blanda V, Antoci F, Scimeca S, D’Agostino R, Scariano E, Piazza A, Galluzzo P, Giudice E, Caracappa S: A Molecular Survey of Anaplasma spp., Rickettsia spp., Ehrlichia canis and Babesia microti in Foxes and Fleas from Sicily. Transbound Emerg Dis 2013, 60:125–130.10.1111/tbed.1213724589112Search in Google Scholar

12. Santoro M, Veneziano V, D’Alessio N, Di Prisco F, Lucibelli MG, Borriello G, Cerrone A, Dantas-Torres F, Latrofa MS, Otranto D, Galiero G: Molecular survey of Ehrlichia canis and Coxiella burnetii infections in wild mammals of southern Italy. Parasitol Res 2016, 115:4427–31.10.1007/s00436-016-5213-027535678Search in Google Scholar

13. Hodžić A, Cézanne R, Duscher GG, Harl J, Glawischnig W, Fuehrer HP: Candidatus Neoehrlichia sp. in an Austrian fox is distinct from Candidatus Neoehrlichia mikurensis, but closer related to Candidatus Neoehrlichia lotoris. Parasit Vectors 2015, 8:539.10.1186/s13071-015-1163-0460831926471191Search in Google Scholar

14. Liebisch G, Dimpfl B, Finkbeiner-Weber B, Liebisch A, Frosch M: The red fox (Vulpes vulpes) a reservoir competent host for Borrelia burgdorferi sensu lato. In: Proc 2nd Int Conf Tick-Host-Pathogen Interactions 1995, p.238Search in Google Scholar

15. Boretti FS, Perreten A, Meli ML, Cattori V, Willi B, Wengi N, Hornok S, Honegger H, Hegglin D, Woelfel R, Reusch CE, Lutz H, Hofmann-Lehmann R: Molecular investigations of Rickettsia helvetica infection in dogs, foxes, humans, and Ixodes ticks. Appl Environ Microbiol 2009, 75:3230–7.10.1128/AEM.00220-09268166619329665Search in Google Scholar

16. Hodžić A, Alić A, Fuehrer H-P, Harl J, Wille-Piazzai W, Duscher G. A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasit Vectors 2015, 8:88.10.1186/s13071-015-0692-x436782525889961Search in Google Scholar

17. Ortuño A, Sanfeliu I, Nogueras MM, Pons I, López-Claessens S, Castellà J, Antón E, Segura F: Detection of Rickettsia massiliae/Bar29 and Rickettsia conorii in red foxes (Vulpes vulpes) and their Rhipicephalus sanguineus complex ticks. Ticks Tick Borne Dis 2018, 9:629–631.10.1016/j.ttbdis.2018.02.00229433817Search in Google Scholar

18. Chisu V, Leulmi H, Masala G, Piredda M, Foxi C, Parola P: Detection of Rickettsia hoogstraalii, Rickettsia helvetica, Rickettsia massiliae, Rickettsia slovaca and Rickettsia aeschlimannii in ticks from Sardinia, Italy. Ticks Tick Borne Dis 2017, 8:347–52.10.1016/j.ttbdis.2016.12.00728110915Search in Google Scholar

19. Gerrikagoitia X, Gil H, García-Esteban C, Anda P, Juste RA, Barral M: Presence of Bartonella species in wild carnivores of Northern Spain. Appl Environ Microbiol 2012,78:885–8.10.1128/AEM.05938-11326410422138983Search in Google Scholar

20. Henn JB, Chomel BB, Boulouis HJ, Kasten RW, Murray WJ, Bar-Gal GK, King R, Courreau JF, Baneth G: Bartonella rochalimae in raccoons, coyotes, and red foxes. Emerg Infect Dis 2009, 15:1984–7.10.3201/eid1512.081692304451319961681Search in Google Scholar

21. Marciano O, Gutiérrez R, Morick D, King R, Nachum-Biala Y, Baneth G, Harrus S: Detection of Bartonella spp. in wild carnivores, hyraxes, hedgehog and rodents from Israel. Parasitology 2016, 143:1232–42.10.1017/S003118201600060327210612Search in Google Scholar

22. Millán J, Proboste T, Fernández de Mera IG, Chirife AD, de la Fuente J, Altet L: Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human-wildlife interface. Ticks Tick Borne Dis 2016, 7:284–90.10.1016/j.ttbdis.2015.11.00326643497Search in Google Scholar

23. Hodžic A, Mrowietz N, Cézanne R, Bruckschwaiger P, Punz S, Habler VE, Tomsik V, Lazar J, Duscher GG, Glawischnig W, Fuehrer HP: Occurrence and diversity of arthropod-transmitted pathogens in red foxes (Vulpes vulpes) in western Austria, and possible vertical (transplacental) transmission of Hepatozoon canis. 2018, Parasitology 145:335–344.10.1017/S003118201700153628835291Search in Google Scholar

24. Otto P, Chaignat V, Klimpel D, Diller R, Melzer F, Müller W, Tomaso H: Serological Investigation of Wild Boars (Sus scrofa) and Red Foxes (Vulpes vulpes) As Indicator Animals for Circulation of Francisella tularensis in Germany. Vector-Borne Zoonotic Dis 2014, 14:46–51.10.1089/vbz.2013.1321388092124359418Search in Google Scholar

25. Meredith AL, Cleaveland SC, Denwood MJ, Brown JK, Shaw DJ: Coxiella burnetii (Q-Fever) Seroprevalence in Prey and Predators in the United Kingdom: Evaluation of Infection in Wild Rodents, Foxes and Domestic Cats Using a Modified ELISA. Transbound Emerg Dis 2015, 62:639–49.10.1111/tbed.1221124479951Search in Google Scholar

26. Hinaidy HK: Die Parasitenfauna des Rotfuchses, Vulpes vulpes (L.), in Österreich. Zentralblatt für Veterinärmedizin R B. 1971, 18:21–32.10.1111/j.1439-0450.1971.tb00340.xSearch in Google Scholar

27. Hinaidy HK. Ein weiterer Beitrag zur Parasitenfauna des Rotfuchses, Vulpes vulpes (L.), in Österreich. Zentralblatt für Veterinärmedizin R B. 1976, 23:66–73.10.1111/j.1439-0450.1976.tb00653.xSearch in Google Scholar

28. Sréter T, Széll Z, Varga I: Spatial distribution of Dermacentor reticulatus and Ixodes ricinus in Hungary: Evidence for change? Vet Parasitol 2005, 128:347–51.10.1016/j.vetpar.2004.11.02515740873Search in Google Scholar

29. Lorusso V, Lia RP, Dantas-Torres F, Mallia E, Ravagnan S, Capelli G, Otranto D: Ixodid ticks of road-killed wildlife species in southern Italy: New tick-host associations and locality records. Exp Appl Acarol 2011, 55:293–300.10.1007/s10493-011-9470-421728058Search in Google Scholar

30. Ćirović D: Morphological variability and biogeorarphical status of the red fox populations (Vulpes vulpes Linnaeus, 1758) in Vojvodina. Faculy of Biology University of Belgrade 2000.Search in Google Scholar

31. Tomanović S, Radulović Ž, Ćakić S, Mihaljica D, Sukara R, Penezić A, Burazerović J, Ćirović D: Tick species (acari: Ixodidae) of red foxes (Vulpes vulpes) in Serbia. 2nd Int Symp Hunting Мodern Asp Sustain Manag game Popul Novi Sad 2013, 229–235.Search in Google Scholar

32. Pavlović I, Milutinović M, Radulović Ž. Fauna artropoda ektoparazita lisica (Vulpes vulpes L.) u Srbiji. Zb Rezim skupa Entomol Srb Goč 2001, p45.Search in Google Scholar

33. Hornok S, Horváth G, Takács N, Farkas R, Szőke K, Kontschán J: Molecular evidence of a badger-associated Ehrlichia sp., a Candidatus Neoehrlichia lotoris-like genotype and Anaplasma marginale in dogs. Ticks Tick Borne Dis 2018, 9:1302–9.10.1016/j.ttbdis.2018.05.01229859884Search in Google Scholar

34. Wass L, Grankvist A, Bell-Sakyi L, Bergström M, Ulfhammer E, Lingblom C, Wennerås C: Cultivation of the causative agent of human neoehrlichiosis from clinical isolates identifies vascular endothelium as a target of infection. Emerg Microbes Infect 2019, 8:413–425.10.1080/22221751.2019.1584017645517230898074Search in Google Scholar

35. Schouls LM, Van De Pol I, Rijpkema SGT, Schot CS: Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 1999, 37:2215–22.10.1128/JCM.37.7.2215-2222.19998512110364588Search in Google Scholar

36. Pan H, Liu S, Ma Y, Tong S, Sun Y: Ehrlichia-like organism gene found in small mammals in the suburban district of Guangzhou of China. Ann N Y Acad Sci 2003, 990:107–11.10.1111/j.1749-6632.2003.tb07346.x12860609Search in Google Scholar

37. Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wennerås C: First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol 2010, 48:1956–9.10.1128/JCM.02423-09286391920220155Search in Google Scholar

38. Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA: ‘Candidatus Neoehrlichia mikurensis’ in Europe. New Microbes New Infect 2018, 22:30–6.10.1016/j.nmni.2017.12.011585718129556406Search in Google Scholar

39. Dugan VG, Gaydos JK, Stallknecht DE, Little SE, Beall AD, Mead DG, Hurd CC, Davidson WR: Detection of Ehrlichia spp. in Raccoons (Procyon lotor) from Georgia. Vector-Borne Zoonotic Dis 2005, 5:162–171.10.1089/vbz.2005.5.16216011433Search in Google Scholar

40. Yabsley MJ, Murphy SM, Luttrell MP, Wilcox BR, Howerth EW, Munderloh UG: Characterization of “Candidatus Neoehrlichia lotoris” (family Anaplasmataceae) from raccoons (Procyon lotor). Int J Syst Evol Microbiol 2008, 58:2794–8.10.1099/ijs.0.65836-0427858919060060Search in Google Scholar

41. Yabsley MJ, Murphy SM, Luttrell MP, Wilcox BR, Ruckdeschel C: Raccoons (Procyon lotor), but not rodents, are natural and experimental hosts for an ehrlichial organism related to “Candidatus Neoehrlichia mikurensis.” Vet Microbiol 2008, 131:301–8.10.1016/j.vetmic.2008.04.00418524503Search in Google Scholar

42. Hodžić A, Cézanne R, Duscher GG, Harl J, Glawischnig W, Fuehrer HP: Candidatus Neoehrlichia sp. in an Austrian fox is distinct from Candidatus Neoehrlichia mikurensis, but closer related to Candidatus Neoehrlichia lotoris. Parasit Vectors 2015, 8:1–4.10.1186/s13071-015-1163-0460831926471191Search in Google Scholar

43. Hodžić A, Mitkovà B, Modrý D, Juránková J, Frgelecová L, Forejtek P, Steinbauer V, Duscher GG: A new case of the enigmatic Candidatus Neoehrlichia sp. (FU98) in a fox from the Czech Republic. Mol Cell Probes 2017, 31:59–60.10.1016/j.mcp.2016.02.00526876304Search in Google Scholar

44. Hildebrand J, Buńkowska-Gawlik K, Adamczyk M, Gajda E, Merta D, Popiołek M, Perec-Matysiak A: The occurrence of Anaplasmataceae in European populations of invasive carnivores. Ticks Tick Borne Dis 2018, 9:934–93710.1016/j.ttbdis.2018.03.01829606620Search in Google Scholar

45. Hornok S, Trauttwein K, Takács N, Hodžić A, Duscher GG, Kontschán J: Molecular analysis of Ixodes rugicollis, Candidatus Neoehrlichia sp. (FU98) and a novel Babesia genotype from a European badger (Meles meles). Ticks Tick Borne Dis 2017, 8:41–4.10.1016/j.ttbdis.2016.09.014Search in Google Scholar

46. Ćirović D, Milenković M: The first record of the free-ranging raccoon (Procyon lotor Linnaeus, 1758) in Yugoslavia. Mamm Biol 2003, 68:116–7.10.1078/1616-5047-00070Search in Google Scholar

47. Ćirovic D, Milenković M: Previous findings of the raccoon dog (Nyctereutes procyonoides ussuriensis Matschie 1907) in Yugoslavia and analysis of probable paths of its immigration. Contrib to Zoogeography Ecol East Mediterr Reg 1999, 1:77–82.Search in Google Scholar

48. Franke J, Hildebrandt A, Dorn W: Exploring gaps in our knowledge on Lyme borreliosis spirochaetes - Updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 2013, 4:11–25.10.1016/j.ttbdis.2012.06.007Search in Google Scholar

49. Gern L, Estrada-Peña A, Frandsen F, Gray JS, Jaenson TGT, Jongejan F, Kahl O, Korenberg E, Mehl R, Nuttall PA: European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt fur Bakteriol 1998, 287:196–204.10.1016/S0934-8840(98)80121-7Search in Google Scholar

50. Heidrich J, Schönberg A, Steuber S, Nöckler K, Schulze P, Voigt W-P, Schein E: Investigation of skin samples from Red Foxes (Vulpes vulpes) in Eastern Brandenburg (Germany) for the detection of Borrelia burgdorferi s.l. Zentralblatt für Bakteriol 1999, 289:666–72.10.1016/S0934-8840(99)80026-7Search in Google Scholar

51. Dumitrache MO, Matei IA, Ionică AM, Kalmár Z, D’Amico G, Sikó-Barabási S, Ionescu DT, Gherman CM, Mihalca AD: Molecular detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato genospecies in red foxes (Vulpes vulpes) from Romania. Parasit Vectors 2015, 8:514.10.1186/s13071-015-1130-9459958626449360Search in Google Scholar

52. Obrenović S, Ristanović E, Čekanac R, Radulović Ž, Ilić V. Seroprevalence of IgG antibodies against Borrelia burgdorferi in dogs in Belgrade area, Serbia. Acta Vet Beograd 2015, 65:99–110.10.1515/acve-2015-0008Search in Google Scholar

53. Potkonjak A, Savić S, Vračar V, Rnjak D, Tikvicki M, Obrenović S, Lako B: Prevalence of G class antibodies to antigens of lyme disease causes in dogs in Vojvodina, Serbia. Vet Glas 2013, 67:55–66.10.2298/VETGL1302055PSearch in Google Scholar

54. Milutinović M, Masuzawa T, Tomanović S, Radulović Ž, Fukui T, Okamoto Y: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Francisella tularensis and their co-infections in host-seeking Ixodes ricinus ticks collected in Serbia. Exp Appl Acarol 2008, 45:171–83.10.1007/s10493-008-9166-618551370Search in Google Scholar

55. Tomanović S, Chochlakis D, Radulović Ž, Milutinović M, Ćakić S, Mihaljica D, Tselentis Y, Psaroulaki A: Analysis of pathogen co-occurrence in host-seeking adult hard ticks from Serbia. Exp Appl Acarol 2013, 59:367–376.10.1007/s10493-012-9597-y22773070Search in Google Scholar

56. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH: Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis 2011, 2:123–8.10.1016/j.ttbdis.2011.04.002Search in Google Scholar

57. Parola P, Roux V, Camicas JL, Baradji I, Brouqui P, Raoult D. Detection of ehrlichiae in African ticks by polymerase chain reaction. Trans R Soc Trop Med Hyg 2000, 94:707–8.10.1016/S0035-9203(00)90243-8Search in Google Scholar

58. Masuzawa T, Komikado T, Iwaki A, Suzuki H, Kaneda K, Yanagihara Y. Characterization of Borrelia sp. isolated from Ixodes tanuki, I. turdus, and I. columnae in Japan by restriction fragment length polymorphism of rrf (5S)-rrl(23S) intergenic spacer amplicons. FEMS Microbiol Lett 1996, 142: 77–83.10.1111/j.1574-6968.1996.tb08411.x8759792Search in Google Scholar

59. Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 1991, 173(5):1576-89.10.1128/jb.173.5.1576-1589.19912073061671856Search in Google Scholar

60. Spyridaki I, Gikas A, Kofteridis D, Psaroulaki A, Tselentis Y. Q fever in the Greek island of Crete: detection, isolation, and molecular identification of eight strains of Coxiella burnetii from clinical samples. J Clin Microbiol 1998, 36: 2063–2067.10.1128/JCM.36.7.2063-2067.19981049799650963Search in Google Scholar

61. Sjöstedt A, Eriksson U, Berglund L, Tärnvik A. Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J Clin Microbiol 1997, 35: 1045-1048.10.1128/jcm.35.5.1045-1048.19972327009114378Search in Google Scholar

62. Rolain JM, Franc M, Davoust B, Raoult D. Molecular detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis, and Wolbachia pipientis in cat fleas, France. Emerg Infect Dis 2003, 9(3):338–342.10.3201/eid0903.020278295853512643829Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo