1. bookVolume 12 (2019): Issue 2 (October 2019)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

Quantum-chemical studies of rutile nanoparticles toxicity I. Defect-free rod-like model clusters

Published Online: 21 Jan 2020
Volume & Issue: Volume 12 (2019) - Issue 2 (October 2019)
Page range: 168 - 174
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

Using the semiempirical PM6 method, structures of a rod-like [Ti40O124H81]7– model cluster and of [Ti40O124H81Cu]5– with Cu2+ coordinated at various sites were optimized in order to assess the toxicity of rutile nanoparticles. If the relative toxicity of individual Ti centers in rod-like rutile nanoparticles can be evaluated by the electron density transfer to a Cu2+ probe, its maximal values can be ascribed to the pentacoordinated corner and hexacoordinated edge Ti centers with three Ti—OH bonds. However, these centers exhibit the least negative interaction energies which can be compensated by the significantly better accessibility of the corner Ti center compared with that of the remaining ones. Ti centers with the most negative interaction energy parameters exhibit the lowest extent of electron density transfer to a Cu2+ probe. Rutile nanoparticles destruction starts at pentacoordinated Ti face centers.

Keywords

Alagona G, Ghio C (2009) Antioxidant Properties of Pterocarpans through Their Copper(II) Coordination Ability. A DFT Study in Vacuo and in Aqueous Solution. J Phys Chem. A 113: 15206—15216.10.1021/jp905521uSearch in Google Scholar

Alagona G, Ghio C (2009a) Plicatin B conformational landscape and affinity to copper (I and II) metal cations. A DFT study. Phys Chem Chem Phys 11: 776—790.10.1039/B813464BSearch in Google Scholar

Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A New ONIOM Implementation in Gaussian 98. 1. The Calculation of Energies, Gradients and Vibrational Frequencies and Electric Field Derivatives. J Mol Struct (Theochem) 462: 1—21.10.1016/S0166-1280(98)00475-8Search in Google Scholar

Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48: 53—229.10.1016/S0167-5729(02)00100-0Search in Google Scholar

Elgrabli D, Beaudouin R, Jbilou N, Floriani M, Pery A, Rogerieux F, Lacroix G (2015) Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection. PLoS ONE 10: e0124490.10.1371/journal.pone.0124490440930125909957Search in Google Scholar

Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82: 151—157.10.1007/s00204-007-0253-y18000654Search in Google Scholar

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. (2009) Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT.Search in Google Scholar

Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M et al. (2014) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11: 0030.10.1186/1743-8977-11-30410539924993397Search in Google Scholar

Hanaor DAH, Assadi MHN, Li S, Yu A, Sorrell CC (2012) Ab initio study of phase stability in doped TiO2. Comput Mechan 50: 185—94.10.1007/s00466-012-0728-4Search in Google Scholar

Hanaor DAH, Xu W-Q, Ferry M, Sorrell CC (2 012a) Abnormal grain growth of rutile TiO2 induced by ZrSiO4. J Cryst Growth 359: 83—91.10.1016/j.jcrysgro.2012.08.015Search in Google Scholar

Hussain H, Tocci G, Woolcot T, Torrelles X, Pang CL, Humphrey DS, Yim CM, Grinter DC, Cabail G, Bikondo O, Lindsay R, Zegenhagen J, Michaelides A, Thornton G (2017) Structure of a model TiO2 photocatalytic interface. Nature Mater 16: 461—466.10.1038/nmat479327842073Search in Google Scholar

Mammino L (2013) Investigation of the antioxidant properties of hyperjovinol A through its Cu(II) coordination ability. J Mol Model 19: 2127—2142.10.1007/s00894-012-1684-923212237Search in Google Scholar

Mulliken RS (1955) Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J Chem Phys 23: 1833—1840.10.1063/1.1740588Search in Google Scholar

Olmedo D, Guglielmotti MB, Cabrini RL (2002) An experimental study of the dissemination of Titanium and Zirconium in the body. J Mater Sci-Mater Medicine 13: 793—796.10.1023/A:1016131310025Search in Google Scholar

Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM et al. (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Let 168: 176—185.10.1016/j.toxlet.2006.12.00117197136Search in Google Scholar

Puškárová I. Breza M (2016) DFT studies of the effectiveness of p-phenylenediamine antioxidants through their Cu(II) coordination ability. Polym Degrad Stab 128: 15—21.10.1016/j.polymdegradstab.2016.02.028Search in Google Scholar

Stephens PJ, Jalkanen KJ, Kawiecki RW (1990) Theory of vibrational rotational strengths: comparison of a priori theory and approximate models. J Am Chem Soc 112: 6518—6529.10.1021/ja00174a011Search in Google Scholar

Stewart JJP (2007) Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13: 1173—1213.10.1007/s00894-007-0233-4203987117828561Search in Google Scholar

Swope RJ, Smyth JR, Larson AC (1995) H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. Am Mineral 80: 448—453.10.2138/am-1995-5-604Search in Google Scholar

Wang Y, Chen Z, Ba T, Pu J, Chen T, Song Y et al. (2013) Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 9: 1742—1752.10.1002/smll.20120118522945798Search in Google Scholar

Xie G, Wang C, Zhong G (2011) Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles. Toxicol Let 205: 55—61.10.1016/j.toxlet.2011.04.03421600967Search in Google Scholar

Zhang Z, Fenter P, Sturchio NC, Bedzyk MJ, Machesky M, Wesolowski DJ (2007) Structure of rutile TiO2 (110) in water and 1 molal Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements. Surf Sci 601: 1129—1143.10.1016/j.susc.2006.12.007Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo