1. bookVolume 72 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

UPLC-HRESI-MS and GC-MS analysis of the leaves of Nicotiana glauca

Published Online: 30 Aug 2021
Page range: 97 - 108
Accepted: 27 Oct 2020
Journal Details
License
Format
Journal
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The alkaloid-rich fraction obtained by fractionation of the crude methanolic extract of the leaves of wild tobacco tree Nicotiana glauca Graham (Solanaceae) was analyzed using UPLC-MS and GC-MS. Anabasine, a piperidine alkaloid, was identified as the major constituent with approximately 60 % (m/m) of the alkaloid-rich fraction. In addition to anabasine, six secondary metabolites were identified using high-resolution UPLC-MS. Anabasine was quantified in the leaves to be 1 mg g−1 dry plant material. The GC-MS analysis revealed five compounds with anabasine as the major component, while nicotine was not detected. Moreover, GC-MS was used for the analysis of the volatile oil that was obtained by hydro-distillation from the leaves of N. glauca. The volatile plant oil was found to be rich in oxygenated sesquiterpenes (e.g., β-bisabolol) and carboxylic acids and esters (e.g., ethyl linoleate and hexadecanoic acid), whereas anabasine was not detected.

Keywords

1. L. J. Schep, R. J. Slaughter and D. M. G. Beasley, Nicotinic plant poisoning, Clin. Toxicol. 47 (2009) 771–781; https://doi.org/10.1080/15563650903252186 Search in Google Scholar

2. P. M. Dewick, Book Medicinal Natural Products: A Biosynthetic Approach, Wiley, Chichester 2011, pp. 331–335. Search in Google Scholar

3. B. T. Green, S. T. Lee, K. E. Panter and D. R. Brown, Piperidine alkaloids: Human and food animal teratogens, Food Chem. Toxicol. 50 (2012) 2049–2055; https://doi.org/10.1016/j.fct.2012.03.049 Search in Google Scholar

4. R. F. Keeler and M. W. Crowe, Congenital deformities in swine induced by wild tree tobacco, Nicotiana glauca, J. Toxicol. Clin. Toxicol. 20 (1983) 47–58; https://doi.org/10.3109/15563658308990049 Search in Google Scholar

5. R. F. Keeler, M. W. Crowe and E. A. Lambert, Teratogenicity in swine of the tobacco alkaloid anaba-sine isolated from Nicotiana glauca, Teratology 30 (1984) 61–69; https://doi.org/10.1002/tera.1420300109 Search in Google Scholar

6. K. E. Panter, R. F. Keeler, T. D. Bunch and R. J. Callan, Congenital skeletal malformations and cleft palate induced in goats by ingestion of Lupinus, Conium and Nicotiana species, Toxicon 28 (1990) 1377–1385; https://doi.org/10.1016/0041-0101(90)90154-Y Search in Google Scholar

7. J. L. Castorena, J. C. Garriott, F. E. Barnhardt and R. F. Shaw, A fatal poisoning from Nicotiana glauca, J. Toxicol. Clin. Toxicol. 25 (1987) 429–435; https://doi.org/10.3109/15563658708992646 Search in Google Scholar

8. P. A. Steenkamp, F. R. van Heerden and B. E. van Wyk, Accidental fatal poisoning by Nicotiana glauca: Identification of anabasine by high performance liquid chromatography/photodiode array/ mass spectrometry, Forensic Sci. Int. 127 (2002) 208–217; https://doi.org/10.1016/S0379-0738(02)00123-8 Search in Google Scholar

9. V. Furer, M. Hersch, N. Silvetzki, G. S. Breuer and S. Zevin, Nicotiana glauca (tree tobacco) intoxication—two cases in one family, J. Med. Toxicol. 7 (2011) 47–51; https://doi.org/10.1007/s13181-010-0102-x Search in Google Scholar

10. N. Mizrachi, S. Levy and Z. Q. Goren, Fatal poisoning from Nicotiana glauca leaves: identification of anabasine by gas-chromatography/mass spectrometry, J. Forensic Sci. 45 (2000) 736–741; https://doi.org/10.1520/JFS14761J Search in Google Scholar

11. D. N. Sims, R. James and T. Christensen, Another death due to ingestion of Nicotiana glauca, J. Forensic Sci. 44 (1999) 447–449 Search in Google Scholar

12. Y. Sercan and K. G. Selahattin, Respiratory failure due to plant poisoning: Nicotiana glauca Graham, J. Emerg. Med. 55 (2018) e61–e63; https://doi.org/10.1016/j.jemermed.2018.06.039 Search in Google Scholar

13. L. B. Mellick, T. Makowski, G. A. Mellick and R. Borger, Neuromuscular blockade after ingestion of tree tobacco (Nicotiana glauca), Ann. Emerg. Med. 34 (1999) 101–104; https://doi.org/10.1016/S0196-0644(99)70280-5 Search in Google Scholar

14. F. Musso, D. Lincor, A. Vasconsuelo, L. Pronsato, B. Faraoni and L. Milanesi, Adverse effects in skeletal muscle following the medicinal use of Nicotiana glauca, Biol. Pharm. Bull. 42 (2019) 671–679; https://doi.org/10.1248/bpb.b18-00424 Search in Google Scholar

15. J. Swearingen and C. Bargeron, Invasive Plant Atlas of the United States, University of Georgia Center for Invasive Species and Ecosystem Health, 2016; http://www.invasiveplantatlas.org/; last access date January 5, 2020 Search in Google Scholar

16. S. Janakat and H. Al-Merie, Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca, J. Ethnopharmacol. 83 (2002) 135–138; https://doi.org/10.1016/S0378-8741(02)00241-6 Search in Google Scholar

17. D. M. Al-Eisawi, Jordan Country Study on Biological Diversity, General Corporation for the Environment Protection, Amman 1998. Search in Google Scholar

18. J. G. Lisko, S. B. Stanfill, B. W. Duncan and C. H. Watson, Application of GC-MS/MS for the analysis of tobacco alkaloids in cigarette filler and various tobacco species, Anal. Chem. 85 (2013) 3380–3384; https://doi.org/10.1021/ac400077e Search in Google Scholar

19. S. T. Lee, D. R. Gardner, C.-W. Tom Chang, K. E. Panter and R. J. Molyneux, Separation and measurement of plant alkaloid enantiomers by RP-HPLC analysis of their Fmoc-alanine analogs, Phytochem. Anal. 19 (2008) 395–402; https://doi.org/10.1002/pca.1064 Search in Google Scholar

20. T. El-Elimat, M. Figueroa, B. M. Ehrmann, N. B. Cech, C. J. Pearce and N. H. Oberlies, High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products, J. Nat. Prod. 76 (2013) 1709–1716; https://doi.org/10.1021/np4004307 Search in Google Scholar

21. M. M. Hudaib, K. A. Tawaha, H. S. Hudaib and A. H. Battah, Chemical composition of volatile oil from the aerial parts of Rosmarinus officinalis L. grown in Jordan, J. Essent. Oil Bear. Pl. 18 (2015) 1282–1286; https://doi.org/10.1080/0972060X.2014.895188 Search in Google Scholar

22. H. van Den Dool and P. Dec. Kratz, A Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography, J. Chromatogr. A 11 (1963) 463–471; https://doi.org/10.1016/S0021-9673(01)80947-X Search in Google Scholar

23. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing Corporation, Carol Stream (IL, USA) 2007. Search in Google Scholar

24. G. F. Alberici, J. Andrieux, G. Adam and M. M. Plat, Synthesis of tobacco alkaloids via tertiary azides, Tetrahedron Lett. 24 (1983) 1937–1940; https://doi.org/10.1016/S0040-4039(00)81810-9 Search in Google Scholar

25. T. Spangenberg, B. Breit and A. Mann, Hydroformylation of homoallylic azides: A rapid approach toward alkaloids, Org. Lett. 11 (2009) 261–264; https://doi.org/10.1021/ol802314g Search in Google Scholar

26. A. F. Morel, E. C. Machado, C. E. F. C. Navarro, S. R. Giacomelli and F. D. Monache, A new amide from Nicotiana glauca, Planta Med. 64 (1998) 284–285; https://doi.org/10.1055/s-2006-957431 Search in Google Scholar

27. W. S. Schlotzhauer, R. J. Horvat, O. T. Chortyk, S. F. Nottingham and D. M. Jackson, Comparison of the volatile flower oils of Nicotiana rustica and N. forgetiana, J. Essent. Oil Res. 7 (1995) 265–269; https://doi.org/10.1080/10412905.1995.9698517 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo