Open Access

Antioxidant and antihyperglycemic activities of Scorzonera cinerea radical leaves in streptozocin-induced diabetic rats


Cite

1. C. Steele, D. Steel and C. Waine, 6 – Pathophysiology of Diabetic Retinopathy, in Diabetes and the Eye (Eds. C. Steele, D. Steel and C. Waine), Butterworth-Heineman 2008, pp. 59–70; https://doi.org/10.1016/B978-0-08-045307-1.50011-310.1016/B978-0-08-045307-1.50011-3Search in Google Scholar

2. O. R. Ayepola, N. L. Brooks and O. O. Oguntibeju, Antioxidant-antidiabetic Agents and Human Health, in Oxidative Stress and Diabetic Complications: The Role of Antioxidant Vitamins and Flavonoids, Intech Open, London 2014, pp. 25–58.Search in Google Scholar

3. J. L. Ríos, F. Francini and G. T. Schinella, Natural products for the treatment of type 2 diabetes mellitus, Planta Med.81 (2015) 975–994; https://doi.org/10.1055/s-0035-154613110.1055/s-0035-1546131Search in Google Scholar

4. A. M. Donia, Phytochemical and pharmacological studies on Scorzonera alexandrina Boiss, J. Saud. Chem. Soc.20 (2016) S433–S439; https://doi.org/10.1016/j.jscs.2013.01.00110.1016/j.jscs.2013.01.001Search in Google Scholar

5. L. Milella, A. Bader, N. De Tommasi, D. Russo and A. Braca, Antioxidant and free radical-scavenging activity of constituents from two Scorzonera species, Food Chem.160 (2014) 298–304; https://doi.org/10.1016/j.foodchem.2014.03.09710.1016/j.foodchem.2014.03.097Search in Google Scholar

6. Ö. B. Acıkara, G. S. Çitoğlu, S. Dall’Acqua, H. Özbek, J. Cvačka, M. Zemlička and K. Ŝmejkal, Bioassay-guided isolation of the antinociceptive compounds motiol and β-sitosterol from Scorzonera latifolia root extract, Pharmazie69 (2014) 711–714; https://doi.org/10.1691/ph.2014.3920Search in Google Scholar

7. E. K. Akkol, Ö. B. Acıkara, I. Süntar, B. Ergene and G. Saltan Çitoğlu, Ethnopharmacological evaluation of some Scorzonera species: In vivo anti-inflammatory and antinociceptive effects, J. Ethnopharmacol.140 (2012) 261–270; https://doi.org/10.1016/j.jep.2012.01.01510.1016/j.jep.2012.01.015Search in Google Scholar

8. E. K. Akkol, O. B. Acıkara, I. Süntar, G. Saltan Çitoğlu, H. Keleş and B. Ergene, Enhancement of wound healing by topical application of Scorzonera species: Determination of the constituents by HPLC with new validated reverse phase method, J. Ethnopharmacol. 137 (2011) 1018–1027; https://doi.org/10.1016/j.jep.2011.07.02910.1016/j.jep.2011.07.029Search in Google Scholar

9. Association of Official Analytical Chemists, Official Methods of Analysis of the AOAC International, (Ed. G. W. Latimer), 20th ed., AOAC International, Rockville 2016, pp. 570–655.Search in Google Scholar

10. V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol. 299 (1999) 152–178; https://doi.org/10.1016/S0076-6879(99)99017-110.1016/S0076-6879(99)99017-1Search in Google Scholar

11. J. Zhishen, T. Mengcheng and W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64 (1999) 555–559; https://doi.org/10.1016/S0308-8146(98)00102-210.1016/S0308-8146(98)00102-2Search in Google Scholar

12. K. Mishra, H. Ojha and N. K. Chaudhury, Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results, Food Chem. 130 (2012) 1036–1043; https://doi.org/10.1016/j.foodchem.2011.07.12710.1016/j.foodchem.2011.07.127Search in Google Scholar

13. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231–1237; https://doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3Search in Google Scholar

14. Y. M. Kim, Y. K. Jeong, M. H. Wang, W. Y. Lee and H. I. Rhee, Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia, Nutrition21 (2005) 756–761; https://doi.org/10.1016/j.nut.2004.10.01410.1016/j.nut.2004.10.014Search in Google Scholar

15. H. H. Draper and M. Hadley, Malondialdehyde determination as index of lipid peroxidation, Methods Enzymol. 186 (1990) 421–431; https://doi.org/10.1016/0076-6879(90)86135-I10.1016/0076-6879(90)86135-ISearch in Google Scholar

16. E. Beutler, T. Gelbart and C. Pegelow, Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency, J. Clin. Invest.77 (1986) 38–41; https://doi.org/10.1172/JCI11229810.1172/JCI112298Search in Google Scholar

17. J. M. McCord, Analysis of superoxide dismutase activity, Curr. Protoc. Toxicol. 00 (1999) 7.3.1–7.3.9; https://doi.org/10.1002/0471140856.tx0703s0010.1002/0471140856.tx0703s00Search in Google Scholar

18. W. A. Günzler, H. Kremers and L. Flohé, An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood, Z. Klin. Chem. Klin. Biochem. 12 (1974) 444–448; https://doi.org/10.1515/cclm.1974.12.10.444.10.1515/cclm.1974.12.10.444Search in Google Scholar

19. H. Aebi, Catalase in vitro, Methods Enzymol. 105 (1984) 121–126; https://doi.org/10.1016/S0076-6879(84)05016-310.1016/S0076-6879(84)05016-3Search in Google Scholar

20. Ö. Erel, A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation, Clin. Biochem. 37 (2004) 277–285; https://doi.org/10.1016/j.clinbiochem.2003.11.01510.1016/j.clinbiochem.2003.11.01515003729Search in Google Scholar

21. Ö. Erel, A new automated colorimetric method for measuring total oxidant status, Clin. Biochem. 38 (2005) 1103–1111; https://doi.org/10.1016/j.clinbiochem.2005.08.00810.1016/j.clinbiochem.2005.08.00816214125Search in Google Scholar

22. O. B. Acikara, J. Hošek, P. Babula, J. Cvačka, M. Budešínský, M. Dračinský, G. S. İşcan, D. Kadlecová, L. Ballová and K. Šmejkal, Turkish Scorzonera species extracts attenuate cytokine secretion via inhibition of NF-κB activation, showing anti-inflammatory effect in vitro, Molecules21 (2016) Article ID 43 (14 pages); https://doi.org/10.3390/molecules2101004310.3390/molecules21010043627453826729082Search in Google Scholar

23. S. Dall’Acqua, G. Ak, S. Sut, I. Ferrarese, G. Zengin, E. Yıldıztugay, M. F. Mahomoodally, K. I. Sinan, and D. Lobine, Phenolics from Scorzonera tomentosa L.: Exploring the potential use in industrial applications via an integrated approach, Ind. Crops Prod. 154 (2020) 112751–112760; https://doi.org/10.1016/j.indcrop.2020.11275110.1016/j.indcrop.2020.112751Search in Google Scholar

24. Institute of Medicine, Dietary Reference Intakes: The Essential Guide to Nutrient Requirements, The National Academies Press, Washington DC 2006, pp. 286–402; https://doi.org/10.17226/1153710.17226/11537Search in Google Scholar

25. F. Taranto, A. Pasqualone, G. Mangini, P. Tripodi, M. M. Miazzi, S. Pavan and C. Montemurro, Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects, Int. J. Mol. Sci. 18 (2017) 377–393; https://doi.org/10.3390/ijms1802037710.3390/ijms18020377534391228208645Search in Google Scholar

26. R. Khattaba, G. B. Celli, A. Ghanem and M. S. Brooks, Effect of frozen storage on polyphenol content and antioxidant activity of haskap berries (Lonicera caerulea L.), J. Berry Res. 5 (2015) 231–242; https://doi.org/10.3233/JBR-15010510.3233/JBR-150105Search in Google Scholar

27. K. T. Kongstad, C. Ozdemir, A. Barzak, S. G. Wubshet and D. Staerk, Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts, J. Agric. Food Chem. 63 (2015) 2257–2263; https://doi.org/10.1021/jf506297k10.1021/jf506297k25652946Search in Google Scholar

28. D. Bagdas, B. C. Etoz, Z. Gul, S. Ziyanok, S. Inan, O. Turacozen, N. Y. Gul, A. Topal, N. Cinkilic, S. Tas, M. O. Ozyigit and M. S. Gurun, In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile, Food Chem. Toxicol. 81 (2015) 54–61; https://doi.org/10.1016/j.fct.2015.04.00110.1016/j.fct.2015.04.00125846499Search in Google Scholar

29. W. Blaschek, Natural products as lead compounds for sodium glucose cotransporter (SGLT) inhibitors, Planta Med. 83 (2017) 985–993; https://doi.org/10.1055/s-0043-10605010.1055/s-0043-10605028395363Search in Google Scholar

30. C. Schulze, A. Bangert, G. Kottra, K. E. Geillinger, B. Schwanck, H. Vollert, W. Blaschek and H. Daniel, Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans, Mol. Nutr. Food Res. 58 (2014) 1795–1808; https://doi.org/10.1002/mnfr.20140001610.1002/mnfr.20140001625074384Search in Google Scholar

31. S. Meng, J. Cao, Q. Feng, J. Peng and Y. Hu, Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review, Evid-Based Complement. Alternat. Med. 2013 (2013) Article ID 801457 (11 pages); https://doi.org/10.1155/2013/80145710.1155/2013/801457376698524062792Search in Google Scholar

32. V. R. Punithavathi, P. S. M. Prince, R. Kumar and J. Selvakumari, Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats, Eur. J. Pharmacol. 650 (2011) 465–471; https://doi.org/10.1016/j.ejphar.2010.08.05910.1016/j.ejphar.2010.08.05920863784Search in Google Scholar

33. A. Bashta, N. Ivchuk and O. Bashta, Yacón and Scorzonera as functional enrichment of food, Ukrainian J. Food Sci. 3 (2015) 13–22.Search in Google Scholar

34. N. Petkova, Characterization of inulin from black salsify (Scorzonera hispanica L.) for food and pharmaceutical purposes, Asian J. Pharm. Clin. Res. 11 (2018) 221–225; https://doi.org/10.22159/ajpcr.2018.v11i12.2826210.22159/ajpcr.2018.v11i12.28262Search in Google Scholar

35. M. Rao, C. Gao, L. Xu, L. Jiang, J. Zhu, G. Chen, B. Y. K. Law and Y. Xu, Effect of inulin-type carbohydrates on insulin resistance in patients with type 2 diabetes and obesity: A systematic review and meta-analysis, J. Diabetes Res. 2019 (2019) Article ID 5101423 (13 pages); https://doi.org/10.1155/2019/510142310.1155/2019/5101423673264231534973Search in Google Scholar

36. P. I. Ingaramo, M. T. Ronco, D. E. A. Francés, J. A. Monti, G. B. Pisani, M. P. Ceballos, M. Galleano, M. C. Carrillo and C. E. Carnovale, Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus, Mol. Immunol. 48 (2011) 1397–1407; https://doi.org/10.1016/j.molimm.2011.03.01510.1016/j.molimm.2011.03.01521481476Search in Google Scholar

37. T. Zhang, Y. Xie, Z. Zhang and G. Wang, Study on hepatoprotective effects of total flavonoids in Scorzonera austriaca Wild in vivo and in vitro, Chin. J. Biochem. Pharm. 35 (2015) 6–9.Search in Google Scholar

38. F. K. Lutchmansingh, J. W. Hsu, F. I. Bennett, A. V. Badaloo, N. McFarlane-Anderson, G. M. Gordon-Strachan, R. A. Wright-Pascoe, F. Jahoor and M. S. Boyn, Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia, PLoS ONE13 (2018) e0198626 (12 pages); https://doi.org/10.1371/journal.pone.019862610.1371/journal.pone.0198626599167929879181Search in Google Scholar

39. L. J. Yan, Redox imbalance stress in diabetes mellitus: Role of the polyol pathway, Animal Model Exp. Med. 1 (2018) 7–13; https://doi.org/10.1002/ame2.1200110.1002/ame2.12001597537429863179Search in Google Scholar

40. H. Yang and C. Zeng, Effects of water extract from Scorzonera sinensis Lipsch, Pteridium aquilinum and Sonchus oleraceus L. on plasma-lipids metabolism in mice fed high fats diet, Food Res. Dev. 36 (2015) 11–13; https://doi.org/10.3969/j.issn.1005-6521.2015.06.003Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other