Open Access

In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery


Cite

1. S. Tamilvanan and S. Benita, The potential of lipid emulsion for ocular delivery of lipophilic drugs, Eur. J. Pharm. Biopharm.58 (2004) 357–368; https://doi.org/10.1016/J.EJPB.2004.03.03310.1016/j.ejpb.2004.03.033Search in Google Scholar

2. F. Lallemand, P. Daull, S. Benita, R. Buggage and J.-S. Garrigue, Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb, J. Drug Deliv.2012 (2012) 604204; https://doi.org/10.1155/2012/60420410.1155/2012/604204Search in Google Scholar

3. L. Gan, J. Wang, M. Jiang, H. Bartlett, D. Ouyang, F. Eperjesi, J. Liu and Y. Gan, Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers, Drug Discov. Today18 (2013) 290–297; https://doi.org/10.1016/J.DRUDIS.2012.10.00510.1016/j.drudis.2012.10.005Search in Google Scholar

4. C. Maïssa, M. Guillon, P. Simmons and J. Vehige, Effect of castor oil emulsion eyedrops on tear film composition and stability, Contact Lens Anterior Eye33 (2010) 76–82; https://doi.org/10.1016/j.clae.2009.10.00510.1016/j.clae.2009.10.005Search in Google Scholar

5. A. Manosroi, K. Podjanasoonthon and J. Manosroi, Development of novel topical tranexamic acid liposome formulations, Int. J. Pharm.235 (2002) 61–70; https://doi.org/10.1016/S0378-5173(01)00980-210.1016/S0378-5173(01)00980-2Search in Google Scholar

6. S. C. de Araújo, A. C. A. de Mattos, H. F. Teixeira, P. M. Z. Coelho, D. L. Nelson and M. C. de Oliveira, Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions, Int. J. Pharm.337 (2007) 307–315; https://doi.org/10.1016/J.IJPHARM.2007.01.00910.1016/j.ijpharm.2007.01.009Search in Google Scholar

7. M. Fraga, M. Laux, B. Zandoná, G. R. Santos, C. dos Santos Giuberti, M. C. de Oliveira, U. Matte and H. Ferreira Teixeira, Optimization of stearylamine-based nanoemulsions obtained by spontaneous emulsification process as nucleic acids delivery systems, J. Drug Deliv. Sci. Technol.18 (2008) 398–403; https://doi.org/10.1016/S1773-2247(08)50078-510.1016/S1773-2247(08)50078-5Search in Google Scholar

8. S. H. Klang, J. Frucht-Pery, A. Hoffman and S. Benita, Physicochemical characterization and acute toxicity evaluation of a positively-charged submicron emulsion vehicle, J. Pharm. Pharmacol.46 (1994) 986–993; https://doi.org/10.1111/j.2042-7158.1994.tb03254.x10.1111/j.2042-7158.1994.tb03254.xSearch in Google Scholar

9. I. A. Sogias, A. C. Williams and V. V Khutoryanskiy, Why is chitosan mucoadhesive?, Biomacro-molecules9 (2008) 1837–1842; https://doi.org/10.1021/bm800276d10.1021/bm800276dSearch in Google Scholar

10. W. T. Liau and A. M. Kasko, Poly(methyl 6-acryloyl-β-d-glucosaminoside) as a cationic glycomimetic of chitosan, Biomacromolecules18 (2017) 4133–4140; https://doi.org/10.1021/acs.biomac.7b0119110.1021/acs.biomac.7b01191Search in Google Scholar

11. M. Juretić, B. Jurišić Dukovski, I. Krtalić, S. Reichl, B. Cetina-Čižmek, J. Filipović-Grčić, J. Lovrić and I. Pepić, HCE-T cell-based permeability model: A well-maintained or a highly variable barrier phenotype?, Eur. J. Pharm. Sci.104 (2017) 23–30; https://doi.org/10.1016/J.EJPS.2017.03.01810.1016/j.ejps.2017.03.018Search in Google Scholar

12. M. Juretić, B. Cetina-Čižmek, J. Filipović-Grčić, A. Hafner, J. Lovrić and I. Pepić, Biopharmaceutical evaluation of surface active ophthalmic excipients using in vitro and ex vivo corneal models, Eur. J. Pharm. Sci.120 (2018) 133–141; https://doi.org/10.1016/J.EJPS.2018.04.03210.1016/j.ejps.2018.04.032Search in Google Scholar

13. K. Kinnunen, A. Kauppinen, N. Piippo, A. Koistinen, E. Toropainen and K. Kaarniranta, Cationorm shows good tolerability on human HCE-2 corneal epithelial cell cultures, Exp. Eye Res.120 (2014) 82–89; https://doi.org/10.1016/J.EXER.2014.01.00610.1016/j.exer.2014.01.006Search in Google Scholar

14. A. Pauly, M. Meloni, F. Brignole-Baudouin, J.-M. Warnet and C. Baudouin, Multiple endpoint analysis of the 3D-reconstituted corneal epithelium after treatment with benzalkonium chloride: Early detection of toxic damage, Invest. Ophthalmol. Vis. Sci.50 (2009) 1644–1652; Retrieved from http://dx.doi.org/10.1167/iovs.08-299210.1167/iovs.08-2992Search in Google Scholar

15. I. Pereira de Sousa, C. Steiner, M. Schmutzler, M. D. Wilcox, G. J. Veldhuis, J. P. Pearson, C. W. Huck, W. Salvenmoser and A. Bernkop-Schnürch, Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles, Eur. J. Pharm. Biopharm.97 (2015) 273–279; https://doi.org/10.1016/J.EJPB.2014.12.02410.1016/j.ejpb.2014.12.024Search in Google Scholar

16. Y. Singh, J. G. Meher, K. Raval, F. A. Khan, M. Chaurasia, N. K. Jain and M. K. Chourasia, Nanoemulsion: Concepts, development and applications in drug delivery, J. Control. Release252 (2017) 28–49; https://doi.org/10.1016/j.jconrel.2017.03.00810.1016/j.jconrel.2017.03.008Search in Google Scholar

17. V. K. Rai, N. Mishra, K. S. Yadav and N. P. Yadav, Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications, J. Control. Release270 (2018) 203–225; https://doi.org/10.1016/J.JCONREL.2017.11.04910.1016/j.jconrel.2017.11.049Search in Google Scholar

18. S. M. Đorđević, A. Santrač, N. D. Cekić, B. D. Marković, B. Divović, T. M. Ilić, M. M. Savić and S. D. Savić, Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances, Int. J. Pharm.533 (2017) 421–430; https://doi.org/10.1016/J.IJPHARM.2017.05.05110.1016/j.ijpharm.2017.05.051Search in Google Scholar

19. L. Gan, J. Wang, M. Jiang, H. Bartlett, D. Ouyang, F. Eperjesi, J. Liu and Y. Gan, Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers, Drug Discov. Today18 (2013) 290–297; https://doi.org/10.1016/J.DRUDIS.2012.10.00510.1016/j.drudis.2012.10.005Search in Google Scholar

20. R. L. Walenga, A. H. Babiskin, X. Zhang, M. Absar, L. Zhao and R. A. Lionberger, Impact of Vehicle Physicochemical Properties on Modeling-Based Predictions of Cyclosporine Ophthalmic Emulsion Bioavailability and Tear Film Breakup Time, J. Pharm. Sci.108 (2019) 620–629; https://doi.org/10.1016/J.XPHS.2018.10.03410.1016/j.xphs.2018.10.034Search in Google Scholar

21. H. Qu, J. Wang, Y. Wu, J. Zheng, Y. S. R. Krishnaiah, M. Absar, S. Choi, M. Ashraf, C. N. Cruz and X. Xu, Asymmetric flow field flow fractionation for the characterization of globule size distribution in complex formulations: A cyclosporine ophthalmic emulsion case, Int. J. Pharm.538 (2018) 215–222; https://doi.org/10.1016/J.IJPHARM.2018.01.01210.1016/j.ijpharm.2018.01.012Search in Google Scholar

22. T. J. Wooster, M. Golding and P. Sanguansri, Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability, Langmuir24 (2008) 12758–12765; https://doi.org/10.1021/la801685v10.1021/la801685vSearch in Google Scholar

23. S. Uluata, E. A. Decker and D. J. McClements, Optimization of Nanoemulsion Fabrication Using Microfluidization: Role of Surfactant Concentration on Formation and Stability, Food Biophys.11 (2016) 52–59; https://doi.org/10.1007/s11483-015-9416-110.1007/s11483-015-9416-1Search in Google Scholar

24. H. D. Silva, M. A. Cerqueira and A. A. Vicente, Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions, J. Food Eng.167 (2015) 89–98; https://doi.org/10.1016/j.jfoodeng.2015.07.03710.1016/j.jfoodeng.2015.07.037Search in Google Scholar

25. S. Brösel and H. Schubert, Investigations on the role of surfactants in mechanical emulsification using a high-pressure homogenizer with an orifice valve, Chem. Eng. Process. Process Intensif.38 (1999) 533–540; https://doi.org/10.1016/S0255-2701(99)00050-110.1016/S0255-2701(99)00050-1Search in Google Scholar

26. J.-P. Hsu and A. Nacu, Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant, J. Colloid Interface Sci.259 (2003) 374–381; https://doi.org/10.1016/S0021-9797(02)00207-210.1016/S0021-9797(02)00207-2Search in Google Scholar

27. J. M. Tiffany, N. Winter and G. Bliss, Tear film stability and tear surface tension, Curr. Eye Res.8 (1989) 507–515; https://doi.org/10.3109/0271368890900003110.3109/02713688909000031Search in Google Scholar

28. B. Nagyová and J. M. Tiffany, Components responsible for the surface tension of human tears, Curr. Eye Res.19 (1999) 4–11; https://doi.org/10.1076/ceyr.19.1.4.534110.1076/ceyr.19.1.4.5341Search in Google Scholar

29. A. Puinhas, P. Sampaio, E. M. S. Castanheira, M. E. C. D. Real Oliveira and M. Lira, Comparison of IgA, TNF-α and surface tension of the tear film in two different times of the day, Contact Lens Anterior Eye36 (2013) 140–145; https://doi.org/10.1016/J.CLAE.2012.12.00510.1016/j.clae.2012.12.005Search in Google Scholar

30. M. Hotujac Grgurević, M. Juretić, A. Hafner, J. Lovrić and I. Pepić, Tear fluid-eye drops compatibility assessment using surface tension, Drug Dev. Ind. Pharm.43 (2017) 275–282; https://doi.org/10.1080/03639045.2016.123892410.1080/03639045.2016.1238924Search in Google Scholar

31. A. Ludwig and H. Reimann, Eye BT – Practical Pharmaceutics: An International Guideline for the Preparation, Care and Use of Medicinal Products, In Y. Bouwman-Boer, V. Fenton-May, & P. Le Brun (Eds.), (pp. 163–188). Cham: Springer International Publishing; https://doi.org/10.1007/978-3-319-15814-3_1010.1007/978-3-319-15814-3_10Search in Google Scholar

32. K. A. Fitzgerald, M. Malhotra, C. M. Curtin, F. J. O’ Brien and C. M. O’ Driscoll, Life in 3D is never flat: 3D models to optimise drug delivery, J. Control. Release215 (2015) 39–54; https://doi.org/10.1016/J.JCONREL.2015.07.02010.1016/j.jconrel.2015.07.020Search in Google Scholar

33. M. Ruponen and A. Urtti, Undefined role of mucus as a barrier in ocular drug delivery, Eur. J. Pharm. Biopharm.96 (2015) 442–446; https://doi.org/10.1016/J.EJPB.2015.02.03210.1016/j.ejpb.2015.02.032Search in Google Scholar

34. I. Pepić, J. Lovrić, B. Cetina-Čižmek, S. Reichl and J. Filipović-Grčić, Toward the practical implementation of eye-related bioavailability prediction models, Drug Discov. Today19 (2014) 31–44; https://doi.org/10.1016/J.DRUDIS.2013.08.00210.1016/j.drudis.2013.08.002Search in Google Scholar

35. I. Krtalić, S. Radošević, A. Hafner, M. Grassi, M. Nenadić, B. Cetina-Čižmek, J. Filipović-Grčić, I. Pepić and J. Lovrić, D-Optimal Design in the Development of Rheologically Improved In Situ Forming Ophthalmic Gel, J. Pharm. Sci.107 (2018) 1562–1571; https://doi.org/10.1016/J.XPHS.2018.01.01910.1016/j.xphs.2018.01.019Search in Google Scholar

36. J. Bassi da Silva, S. B. de S. Ferreira, O. de Freitas and M. L. Bruschi, A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems, Drug Dev. Ind. Pharm.43 (2017) 1053–1070; https://doi.org/10.1080/03639045.2017.129460010.1080/03639045.2017.1294600Search in Google Scholar

37. E. E. Hassan and J. M. Gallo, A Simple Rheological Method for the in Vitro Assessment of Mucin-Polymer Bioadhesive Bond Strength, Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. (1990); https://doi.org/10.1023/A:101581261563510.1023/A:1015812615635Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other