1. bookVolume 69 (2019): Issue 2 (June 2019)
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Transdermal patches: Design and current approaches to painless drug delivery

Published Online: 28 Mar 2019
Page range: 197 - 215
Accepted: 07 Nov 2018
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
Abstract

Use of transdermal patches can evade many issues associated with oral drug delivery, such as first-pass hepatic metabolism, enzymatic digestion attack, drug hydrolysis and degradation in acidic media, drug fluctuations, and gastrointestinal irritation. This article reviews various transdermal patches available in the market, types, structural components, polymer role, and the required assessment tools. Although transdermal patches have medical applications for smoking cessation, pain relief, osteoporosis, contraception, motion sickness, angina pectoris, and cardiac disorders, advances in formulation development are ongoing to make transdermal patches capable of delivering more challenging drugs. Transdermal patches can be tailored and developed according to the physicochemical properties of active and inactive components, and applicability for long-term use. Therefore, a number of chemical approaches and physical techniques for transdermal patch development are under investigation.

Keywords

1. L. Zhang and S. Mao, Application of quality by design in the current drug development, As. J. Pharm. Sci. 12 (2017) 1–8; https://doi.org/10.1016/j.ajps.2016.07.00610.1016/j.ajps.2016.07.006703218332104308Search in Google Scholar

2. M. R. Prausnitz and R. Langer, Transdermal drug delivery, Nat. Biotechnol. 26 (2008) 1261–1268; https://doi.org/10.1038/nbt.150410.1038/nbt.1504270078518997767Search in Google Scholar

3. M. J. Tsai, I. J. Lu, Y. S. Fu, Y.P. Fang, Y. B. Huang and P. C. Wu, Nanocarriers enhance the transdermal bioavailability of resveratrol: In-vitro and in-vivo study, Colloids Surf. B Biointerfaces148 (2016) 650–656; https://doi.org/10.1016/j.colsurfb.2016.09.04510.1016/j.colsurfb.2016.09.04527697739Search in Google Scholar

4. A. Simon and M. I. Amaro, A. M. Healy, L. M. Cabral and V. P. de Sousa, Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation, Int. J. Pharm. 512 (2016) 234–241; https://doi.org/10.1016/j.ijpharm.2016.08.05210.1016/j.ijpharm.2016.08.05227568498Search in Google Scholar

5. E. M. Pridgen, F. Alexis and O. C. Farokhzad, Polymeric nanoparticle drug delivery technologies for oral delivery applications, Expert Opin. Drug. Deliv. 12 (2015) 1459–1473; https://doi.org/10.1517/17425247.2015.101817510.1517/17425247.2015.1018175483517325813361Search in Google Scholar

6. M. Arafat, Approaches to achieve an oral controlled release drug delivery system using polymers: a recent review, Int. J. Pharm. Pharm. Sci. 7 (2015) 16–21.Search in Google Scholar

7. R. Gannu, Y. V. Vishnu, V. Kishan and Y. M. Rao, Development of nitrendipine transdermal patches: in vitro and ex vivo characterization, Curr. Drug Deliv. 4 (2007) 69–76.10.2174/15672010777931476717269919Search in Google Scholar

8. M. Arafat, Bilosomes as a Drug Delivery System, in Thesis, Doctor of Philosophy, University of Otago, NZ, (2012); http://hdl.handle.net/10523/2157Search in Google Scholar

9. M. N. Pastore, Y. N. Kalia, M. Horstmann and M. S Roberts, Transdermal patches: history, development and pharmacology, Br. J. Pharmacol. 172 (2015) 2179–2209; https://doi.org/10.1111/bph.1305910.1111/bph.13059440308725560046Search in Google Scholar

10. M. B. Brown, G. P. Martin, S. A. Jones and F. K. Akomeah, Dermal and transdermal drug delivery systems: Current and future prospects, Drug Del. 13 (2008) 175–187; https://doi.org/10.1080/1071754050045597510.1080/1071754050045597516556569Search in Google Scholar

11. K. S. Paudel, M. Milewski, C. L. Swadley, N. K Brogden, P. Ghosh and A. L. Stinchcomb, Challenges and opportunities in dermal/transdermal delivery, Ther. Deliv. 1 (2010) 109–131.10.4155/tde.10.16299553021132122Search in Google Scholar

12. G. A. Van Norman, Drugs, Devices, and the FDA: Part 2: An overview of approval processes: FDA approval of medical devices, JACC: Bas. Transl. Sci. 1 (2016) 277–287; https://doi.org/10.1016/j.jacbts.2016.03.00910.1016/j.jacbts.2016.03.009611334030167516Search in Google Scholar

13. M. Isaac and C. Holvey, Transdermal patches: the emerging mode of drug delivery system in psychiatry, Ther. Adv. Psychopharmacol. 2 (2012) 255–263; https://doi.org/10.1177/204512531245831110.1177/2045125312458311373695223983984Search in Google Scholar

14. A. Z. Alkilani, M. T. C. McCrudden and R. F. Donnelly, Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum, Pharmaceutics7 (2015) 438–470; https://doi.org/10.3390/pharmaceutics704043810.3390/pharmaceutics7040438469582826506371Search in Google Scholar

15. M. Murphy and A. J. Carmichael, Transdermal drug delivery systems and skin sensitivity reactions. Incidence and management, Am. J. Clin. Dermatol. 1 (2000) 361–368.10.2165/00128071-200001060-0000411702612Search in Google Scholar

16. P. Karandea and S. Mitragotrib, Enhancement of transdermal drug delivery via synergistic action of chemicals, Biochim. Biophys. Acta1788 (2009) 2362–2373; https://doi.org/10.1016/j.bbamem.2009.08.01510.1016/j.bbamem.2009.08.01519733150Search in Google Scholar

17. J. Suksaeree, C. Monton, F. Madaka, T. Chusut, W. Saingam, W. Pichayakorn and P. Boonme, Formulation, physicochemical characterization, and in vitro study of chitosan/HPMC blends-based herbal blended patches, AAPS Pharm. Sci. Tech. 16 (2015) 171–181; https://doi.org/10.1208/s12249-014-0216-610.1208/s12249-014-0216-6430982125233803Search in Google Scholar

18. N. S. Chandrashekar and R. H. S. Rani, Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery, Indian J. Pharm. Sci. 70 (2008) 94–96; https://doi.org/10.4103/0250-474X.4034010.4103/0250-474X.40340285207020390089Search in Google Scholar

19. M. Arafat, The effect of intestinal bile on the stability of lipid-based vesicular system used as oral drug carriers, Glob. Drug Therap. 2 (2016) 1–2; https://doi.org/10.15761/GDT.100010910.15761/GDT.1000109Search in Google Scholar

20. J. Suksaereeab, L. Charoenchaib, F. Madakab, C. Montonb, A. Sakunpak, T. Charoonratana and W. Zingiber, Cassumunar blended patches for skin application: Formulation, physicochemical properties, and in vitro studies, Asian J. Pharm. Sci. 10 (2015) 341–349; https://doi.org/10.1016/j.ajps.2015.03.00110.1016/j.ajps.2015.03.001Search in Google Scholar

21. A. C. Willams and B. W. Barry, Penetration enhancers, Adv. Drug. Del. Rev. 56 (2004) 603–618.10.1016/j.addr.2003.10.02515019749Search in Google Scholar

22. S. D. Saoji, S. C. Atram, P. W. Dhore, P. S. Deole, N. A. Raut and V. S. Dave, Influence of the component excipients on the quality and functionality of a transdermal film formulation, AAPS Pharm. Sci. Tech. 16 (2015) 1344–1356; https://doi:10.1208/s12249-015-0322-010.1208/s12249-015-0322-0466625525922089Search in Google Scholar

23. M. Imani, F. Lahooti-Fard, S. M. Taghizadeh and M Takrousta, Effect of adhesive layer thickness and drug loading on estradiol crystallization in a transdermal drug delivery system, AAPS Pharm. Sci. Tech. 11 (2010) 1268–1275; https://doi.org/10.1208/s12249-010-9494-910.1208/s12249-010-9494-9Search in Google Scholar

24. S. Dhiman, T. G. Singh and A. K. Rehni, Transdermal patches: A recent approach to new drug delivery system, Int. J. Pharm. Pharm. Sci. 3 (2011) 26–34.Search in Google Scholar

25. S. Rani, K. Saroha, N. Syan and P. Mathur, Transdermal patches a successful tool in transdermal drug delivery system: An overview, Der Pharm. Sinica2 (2011) 17–29.Search in Google Scholar

26. B. Berner and V. A. John, Pharmacokinetic characterization of transdermal delivery system, J. Clin. Pharmacol. 26 (1994) 121–134.10.2165/00003088-199426020-00005Search in Google Scholar

27. S. Mutalik and N. Udupa, Pharmacological evaluation of membrane-moderated transdermal system of glipizide, Clin. Exp. Pharmacol. Physiol. 33 (2006) 17-26.10.1111/j.1440-1681.2006.04318.xSearch in Google Scholar

28. C. L. Stevenson, J. T. Jr. Santini and R. Langer, Reservoir-based drug delivery systems utilizing microtechnology, Adv. Drug Deliv. Rev. 64 (2012) 1590–1602; https://doi.org/10.1016/j.addr.2012.02.00510.1016/j.addr.2012.02.005Search in Google Scholar

29. P. J. Hughes, M. K. Freeman and T. M. Wensel, Appropriate use of transdermal drug delivery systems, J. Nurs. Edu. Pract. 3 (2013) 129–138.Search in Google Scholar

30. S. Cherukuri, U. R. Batchu, K. Mandava, V. Cherukuri, K. R. Ganapuram, Formulation and evaluation of transdermal drug delivery of topiramate, Int. J. Pharm. Investig. 7 (2017) 10–17; https://doi.org/10.4103/jphi.JPHI_35_1610.4103/jphi.JPHI_35_16Search in Google Scholar

31. E. Abd, S. A. Yousef, M. N. Pastore, K. Telaprolu, Y. H. Mohammed, S. Namjoshi, J. E. Grice and M. S. Roberts, Skin models for the testing of transdermal drugs, Clin. Pharmacol. 8 (2016) 163–176; https://doi.org/10.2147/CPAA.S6478810.2147/CPAA.S64788Search in Google Scholar

32. A. Z. Alkilani, M. T. C. McCrudden and R. F. Donnelly, Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum, Pharmaceutics7 (2015) 438–470; https://doi.org/10.3390/pharmaceutics704043810.3390/pharmaceutics7040438Search in Google Scholar

33. H. Trommer and R. H. H. Neubert, Overcoming the stratum corneum: the modulation of skin penetration, Skin Pharmacol. Physiol. 19 (2006) 106–121; https://doi.org/10.1159/00009197810.1159/000091978Search in Google Scholar

34. S. S. Davis and L. Illum, Drug Delivery Systems for Challenging Molecules, Int. J. Pharm. 176 (1998) 1–8.10.1016/S0378-5173(98)00290-7Search in Google Scholar

35. A. Ahmed, N. Karki, R. Charde, M. Charde and B. Gandhare, Transdermal drug delivery systems: An overview, Int. J. Biomed. Adv. Res. 2 (2010) 38–56.Search in Google Scholar

36. S. R. W. Baker and J. Heller, Material Selection for Transdermal Delivery Systems, in Transdermal Drug Delivery: Developmental Issues and Research Initiatives (Eds. J. Hadgraft and R. H. Guys), Marcel Dekker, Inc., New York 1989, pp. 293–311.Search in Google Scholar

37. M. Guyot and F. Fawaz, Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol, Int. J. Pharm. 204 (2000) 171–182.10.1016/S0378-5173(00)00494-4Search in Google Scholar

38. Ł. Zimmer, R. Kasperek and E. Poleszak, Modern polymers in matrix tablets technology, Polim. Med. 44 (2014)189–196.Search in Google Scholar

39. M. Guyot and F. Fawaz, Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol, Int. J. Pharm. 204 (2000) 171–182.10.1016/S0378-5173(00)00494-4Search in Google Scholar

40. A. F. El-Kattan, C. S. Asbill and B. B. Michniak, The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems, Int. J. Pharm. 198 (2000) 179–189.10.1016/S0378-5173(00)00330-6Search in Google Scholar

41. R. Sutinen, P. Paronen, V. Saano and A. Urtti, Water-activated, pH-controlled patch in transdermal administration of timolol: II. Drug absorption and skin irritation, Eur. J. Pharm. Sci. 11 (2000) 25–31.Search in Google Scholar

42. H. Iwase, J. I. Sudo, J. Terui, K. Kakuno, T. Watanabe, K. Takayama and T. Nagai, Transdermal absorption of L-dopa from a new system composed of two separate layers of L-dopa and hydrogel in rats, Drug Dev. Ind. Pharm. 26 (2000) 755–759.10.1081/DDC-100101294Search in Google Scholar

43. M. K. Kim, H. Zhao, C. H. Lee and D. D. Kim, Formulation of a reservoir-type testosterone trans-dermal delivery system, Int. J. Pharm. 219 (2001) 51–59.10.1016/S0378-5173(01)00631-7Search in Google Scholar

44. H. Gabiga, K. Cal and S. Janicki, Effect of penetration enhancers on isosorbide dinitrate penetration through rat skin from a transdermal therapeutic system, Int. J. Pharm. 199 (2000) 1–6.10.1016/S0378-5173(99)00363-4Search in Google Scholar

45. S. Ohmori, T. Hayash, M. Kawase, S. Saito, K. Sugibayashi and Y. Morimoto, Transdermal delivery of the potent analgesic dihydroetorphine: kinetic analysis of skin permeation and analgesic effect in the hairless rat, J. Pharm. Pharmacol. 52 (2000) 1437–1449.Search in Google Scholar

46. T. Pongjanyakul, S. Prakongpan and A. Priprem, Permeation studies comparing cobra skin with human skin using nicotine transdermal patches, Drug Dev. Ind. Pharm. 26 (2000) 635–642.10.1081/DDC-10010127810826111Search in Google Scholar

47. S. M. Al-Saidan,Y. S. R. Krishnaiah, D. V. Chandrasekhar, J. K. Lalla, B. Rama, B. Jayaram and P. Bhaskar, Formulation of an HPMC gel drug reservoir system with ethanol-water as a solvent system and limonene as a penetration enhancer for enhancing in vitro transdermal delivery of nicorandil, Skin Pharmacol. Physiol. 17 (2004) 310–320.10.1159/00008111715528962Search in Google Scholar

48. Y. S. Krishnaiah, P. Bhaskar and V. Satyanarayana, Penetration-enhancing effect of ethanol-water solvent system and ethanolic solution of carvone on transdermal permeability of nimodipine from HPMC gel across rat abdominal skin, Pharm. Dev. Technol. 9 (2004) 63–74.10.1081/PDT-12002741915000467Search in Google Scholar

49. Y. Tanwar, C. Chauhan and A. Sharma, Development and evaluation of carvedilol transdermal patches, Acta Pharm. 57 (2007) 151–159.10.2478/v10007-007-0012-x17507312Search in Google Scholar

50. A. Wahid, B. Sridhar and S. Shivakumar, Preparation and evaluation of transdermal drug delivery system of etoricoxib using modified chitosan, Indian J. Pharm. Sci. 70 (2008) 455–460.10.4103/0250-474X.44593279253720046770Search in Google Scholar

51. B. Winblad and J. C. Machado. Use of rivastigmine transdermal patch in the treatment of Alzheimer’s disease, Expert Opin. Drug Deliv. 5 (2008) 1377–1386.10.1517/17425240802542690Search in Google Scholar

52. C. Ren, L. Fang, L. Ling, Q. Wang, S. Liu, L. Zhao and Z. He, Design and in vivo evaluation of an indapamide transdermal patch, Int. J. Pharm. 370 (2009) 129–135.10.1016/j.ijpharm.2008.12.004Search in Google Scholar

53. S. Jayaprakash, S. M. Halith, P. M. Firthouse and N. M. Yasmin, Preparation and evaluation of celecoxib transdermal patches, Pak. J. Pharm. Sci. 23 (2010) 279–283.Search in Google Scholar

54. Y. C. Ah, J. K. Choi, Y. K. Choi, H. M. Ki and J. H. Bae, A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization, Int. J. Pharm. 385 (2010) 12–19.Search in Google Scholar

55. P. Anitha, S. Ramkanth, M. T. Saleem, K. Umasankari, B. P. Reddy and M. Chetty, Preparation, in-vitro and in-vivo characterization of transdermal patch containing glibenclamide and atenolol: a combinational approach, Pak. J. Pharm. Sci. 24 (2011) 155–163.Search in Google Scholar

56. D. M. Panchaxari, S. Pampana, T. Pal, B. Devabhaktuni and A. K. Aravapalli, Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination, Daru21 (2013) 6; https://doi.org/10.1186/2008-2231-21-610.1186/2008-2231-21-6Search in Google Scholar

57. H. M. Wolff, Optimal process design for the manufacture of transdermal drug delivery systems, Pharm. Sci. Technol. Today. 3 (2000) 173–181.10.1016/S1461-5347(00)00251-0Search in Google Scholar

58. L. Bromberg, Crosslinked poly(ethylene glycol) networks as reservoirs for protein delivery, J. Appl. Polym. Sci. 59 (1996) 459–466.10.1002/(SICI)1097-4628(19960118)59:3<459::AID-APP10>3.0.CO;2-PSearch in Google Scholar

59. P. Costa, D. C. Ferreira, R. Morgado and J. S. Lobo, Design and evaluation of a lorazepam transdermal delivery system, Drug Dev. Ind. Pharm. 23 (1997) 939–944.10.3109/03639049709149144Search in Google Scholar

60. P. Minghetti, F. Cilurzo and L. Montanari, Evaluation of adhesive properties of patches based on acrylic matrices, Drug Dev. Ind. Pharm. 25 (1999) 1–6.10.1081/DDC-100102135Search in Google Scholar

61. P. R. Rao and P. V. Diwan, Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration, Drug Dev. Ind. Pharm. 24 (1998) 327–336.10.3109/03639049809085627Search in Google Scholar

62. S. S. Baek and S. H. Hwang, Eco-friendly UV-curable pressure sensitive adhesives containing acryloyl derivatives of monosaccharides and their adhesive performances, Int. J. Adhes. Adhes. 70 (2016) 110–116; https://doi.org/10.1016/j.ijadhadh.2016.06.00210.1016/j.ijadhadh.2016.06.002Search in Google Scholar

63. S. Banerjee, P. Chattopadhyay, A. Ghosh, P. Datta and V. Veer, Aspect of adhesives in transdermal drug delivery systems, Int. J. Adhes. Adhes. 50 (2014) 70–84; https://doi.org/10.1016/j.ijadhadh.2014.01.00110.1016/j.ijadhadh.2014.01.001Search in Google Scholar

64. C. Fang, Y. Jing, Y. Zong and Z. Lin, Effect of N,N-dimethylacrylamide (DMA) on the comprehensive properties of acrylic latex pressure sensitive adhesives, Int. J. Adhes. Adhes. 71 (2016) 105–111; https://doi.org/10.1016/j.ijadhadh.2016.09.00310.1016/j.ijadhadh.2016.09.003Search in Google Scholar

65. V. G. Kadajji and G. V. Betageri. Water soluble polymers for pharmaceutical applications, Polymers3 (2011) 1972–2009; https://doi.org/10.3390/polym304197210.3390/polym3041972Search in Google Scholar

66. I. Benedek, M. M. Feldstein, N. Willenbacher and O. V. Lebedeva, Polyisobutene-Based Pressure-Sensitive Adhesives. Technology of Pressure-Sensitive Adhesives and Products, CRC Press; 2008. p. 4-1-4-18.10.1201/9781420059410-4Search in Google Scholar

67. X. Tong, Q. Wang, H. X. Wang, X. H. Li, W. Wu and X. Y. Chey, Fabrication of pH sensitive amphiphilic hot-melt pressure sensitive adhesives for transdermal drug delivery system, Int. J. Adhes. Adhes. 48 (2014) 217–223; https://doi.org/10.1016/j.ijadhadh.2013.09.02510.1016/j.ijadhadh.2013.09.025Search in Google Scholar

68. D. J. Lyman and B. H. Loo, New synthetic membranes for dialysis. IV. A copolyether–urethane membrane system, J. Biomed. Mater. Res. 1 (1967) 17–26.10.1002/jbm.820010105Search in Google Scholar

69. V. Stannett, W. Koros, D. Paul, H. Lonsdale and R. Baker, Recent Advances in Membrane Science and Technology, in Advances in Polymer Sciences, Vol. 32, Chemistry, Springer Verlag, Berlin 1979, pp. 69–121.10.1007/3-540-09442-3_5Search in Google Scholar

70. D. G. Maillard-Salin, P. Becourt and G. Couarraze, Physical evaluation of a new patch made of a progestomimetic in a silicone matrix, Int. J. Pharm. 199 (2000) 29–38.10.1016/S0378-5173(00)00357-4Search in Google Scholar

71. D. G. Maillard-Salin, P. Becourt and G. Couarraze, A study of the adhesive-skin interface: correlation between adhesion and passage of a drug, Int. J. Pharm. 200 (2000) 121–126.Search in Google Scholar

72. C. D. Ebert, W. Heiber, R. Andriola and P. Williams, Development of a novel transdermal system design, J. Control. Release. 6 (1987) 107–111.10.1016/0168-3659(87)90068-XSearch in Google Scholar

73. A. Flo, T. Cambras, A. Díez-Noguera and A. Calpena, Melatonin pharmacokinetics after transdermal administration changes according to the time of the day, Eur. J. Pharm. Sci. 96 (2017) 164–170; https://doi.org/10.1016/j.ejps.2016.09.02010.1016/j.ejps.2016.09.02027644893Search in Google Scholar

74. I. Som, K. Bhatia and M. Yasir, Status of surfactants as penetration enhancers in transdermal drug delivery, J. Pharm. Bioallied Sci. 4 (2012) 2–9; https://doi.org/10.4103/0975-7406.9272410.4103/0975-7406.92724328395222368393Search in Google Scholar

75. Y. Chen, P. Quan, X. Liu, M. Wang and L. Fang, Novel chemical permeation enhancers for transdermal drug delivery, Asian J. Pharm. Sci. 9 (2014) 51–64.10.1016/j.ajps.2014.01.001Search in Google Scholar

76. Q. D. Pham, S. Björklund, J. Engblom, D. Topgaard and E. Sparr, Chemical penetration enhancers in stratum corneum – Relation between molecular effects and barrier function, J. Control. Release232 (2016) 175–187; https://doi.org/10.1016/j.jconrel.2016.04.03010.1016/j.jconrel.2016.04.03027108613Search in Google Scholar

77. G. El Maghraby, A. C. Williams and B. Barry, Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes, Int. J. Pharm. 276 (2004) 143–161.10.1016/j.ijpharm.2004.02.02415113622Search in Google Scholar

78. M. Arafat, C. Kirchhoefer, M. Mikov, M. Sarfraz and R. Löbenberg, Nanosized liposomes containing bile salt: A vesicular nanocarrier for enhancing oral bioavailability of BCS class III drug, J. Pharm. Pharm. Sci. 20 (2017) 305–318; https://doi.org/10.18433/J3CK8810.18433/J3CK8828885915Search in Google Scholar

79. M. Arafat, C. Kirchhoefer and M. Mikov, Mixed micelles loaded with bile salt: an approach to enhance intestinal transport of the BCS class III drug cefotaxime in rats, Eur. J. Drug Metab. Pharmacokinet. 42 (2017) 635–645; https://doi.org/10.1007/s13318-016-0375-910.1007/s13318-016-0375-927686853Search in Google Scholar

80. T. E. G. K. Murthy and V. S. Kishore, Effect of casting solvent and polymer on permeability of propranolol hydrochloride through membrane controlled transdermal drug delivery system, Indian J. Pharm. Sci. 69 (2007) 646–650; https://doi.org/10.4103/0250-474X.3846910.4103/0250-474X.38469Search in Google Scholar

81. A. Alexander, S. Dwivedi, T. K. Giri, S. Saraf and D. K. Tripathi, Approaches for breaking the barriers of drug permeation through transdermal drug delivery, J. Control. Release164 (2012) 26–40; https://doi.org/10.1016/j.jconrel.2012.09.01710.1016/j.jconrel.2012.09.01723064010Search in Google Scholar

82. Guideline on quality of transdermal patches. European Medicines Agency, Committee for Medicinal Products for Human Use (2014) 1-27. EMA/CHMP/QWP/608924/2014Search in Google Scholar

83. H. Lim and S. W. Hoag, Plasticizer effects on physical–mechanical properties of solvent cast Soluplus® films, AAPS Pharm. Sci. Tech. 14 (2013) 903–910; https://doi.org/10.1208/s12249-013-9971-z10.1208/s12249-013-9971-z375516923689959Search in Google Scholar

84. M. Arafat, Z. Ahmed and O. Arafat, Comparison between generic drugs and brand name drugs from bioequivalence and thermoequivalence prospective, Int. J. Pharm. Pharm. Sci. 9 (2017) 1–4.10.22159/ijpps.2017v9i6.18735Search in Google Scholar

85. M. Bharkatiya, R. Nema and M. Bhatnagar, Designing and characterization of drug free patches for transdermal application, Int. J. Pharm. Sci. Drug Res. 2 (2012) 35–39.Search in Google Scholar

86. K. C. Garala, A. J. Shinde and P. H. Shah, Formulation and in-vitro characterization of monolithic matrix transdermal systems using HPMC/Eudragit S 100 polymer blends, Int. J. Pham. Pharm. Sci. 1 (2009) 108–120.Search in Google Scholar

87. J. M. Prosser, B. E. Jones and L. Nelson, Complications of oral exposure to fentanyl transdermal delivery system patches, J. Med. Toxicol. 6 (2010) 443–447.10.1007/s13181-010-0092-8355045420532845Search in Google Scholar

88. J. Singh, K. Tripathi and T. Sakya, Effect of penetration enhancers on the in vitro transport of ephedrine through rat skin and human epidermis from matrix based transdermal formulations, Drug Dev. Ind. Pharm. 19 (1993) 1623–1628.10.3109/03639049309069331Search in Google Scholar

89. N. Maftoona, H. S. Ramaswamy and M. Marcotte, Evaluation of factors affecting barrier, mechanical and optical properties of pectin-based films using response surface methodology, J. Food. Process Eng. 30 (2007) 539–563; https://doi.org/10.1111/j.1745-4530.2007.00123.x10.1111/j.1745-4530.2007.00123.xSearch in Google Scholar

90. A. Singh and A. Bali, Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride, J. Anal. Sci. Technol. 7 (2016) 25; https://doi.org/10.1186/s40543-016-0105-610.1186/s40543-016-0105-6Search in Google Scholar

91. J. Wiechers, Use of chemical penetration enhancers in transdermal drug delivery – possibilities and difficulties, Acta Pharm Nord. 4 (1992) 123.Search in Google Scholar

92. S. Banerjee, P. Chattopadhyay, A. Ghosh, P. Datta and V. Veer, Aspect of adhesives in transdermal drug delivery systems, Int. J. Adhes. Adhes. 50 (2014) 70–84.10.1016/j.ijadhadh.2014.01.001Search in Google Scholar

93. A. M. Wokovich, S. Prodduturi, W. H. Doub, A. S. Hussain and L. F. Buhse, Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute, Eur. J. Pharm. Biopharm. 64 (2006) 1–8.10.1016/j.ejpb.2006.03.009Search in Google Scholar

94. A. J. Steven-Fountain, A. G. Atkins, G. Jeronimidis, J. F. V. Vincent, D. F. Farrar and R. A. Chivers, The effect of flexible substrates on pressure-sensitive adhesive performance, Int. J. Adhes. Adhes. 22 (2002) 423–430.10.1016/S0143-7496(02)00018-0Search in Google Scholar

95. G. Thakur, A. Singh and I. Singh, Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin, Int. J. Pharm. Investig. 6 (2016) 23–31; https://doi.org/10.4103/2230-973X.17646810.4103/2230-973X.176468478705927014616Search in Google Scholar

96. T. Kamal, M. Sarfraz, M. Arafat, M. Mikov and N Rahman, Cross-linked guar gum and sodium borate based microspheres as colon-targeted anticancer drug delivery systems for 5-fluorouracil, Pak. J. Pharm. Sci. 30 (2017) 2329–2336.Search in Google Scholar

97. O. A. Hanbali, R. Hamed, M. Arafat, Y. Bakkour, H. Matubsi, R. Mansour, Y. Bataineh, M. Aldhoun, M. Sarfraz and A. K. Yousef Dardas, Formulation and evaluation of diclofenac controlled release matrix tablets made of HPMC and Poloxamer 188 polymer: An assessment on mechanism of drug release, Pak. J. Pharm. Sci. 31 (2018) 345–351.Search in Google Scholar

98. T. Z. Marques, R. Santos-Oliveira, L. B. de Siqueira, V. S. Cardoso, Z. M. de Freitas, R. C. Barros, A. L. Villa, M. S. Monteiro, E. P. Santos and E. Ricci-Junior, Development and characterization of a nanoemulsion containing propranolol for topical delivery, Int. J. Nanomedicine13 (2018) 2827–2837; https://doi.org/10.2147/IJN.S16440410.2147/IJN.S164404595706329785109Search in Google Scholar

99. C. S. Cerqueira-Coutinho, V. E. De Campo, A. L. Rossi, V. F. Veiga, C. Holandino, Z. M. Freitas, E. Ricci-Junior, C. R. Mansur, E. P. Santos and R. Santos-Oliveira, Comparing in vivo biodistribution with radiolabeling and Franz cell permeation assay to validate the efficacy of both methodologies in the evaluation of nanoemulsions: a safety approach, Nanotechnology27 (2016) 015101; https://doi.org/10.1088/0957-4484/27/1/01510110.1088/0957-4484/27/1/01510126605997Search in Google Scholar

100. J. Wang, Y. Wei, Y. R. Fei, L. Fang, H. S. Zheng, C. F. Mu, F. Z. Li and Y. S. Zhang, Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride, Int. J. Pharm. 533 (2017) 266–274; https://doi.org/10.1016/j.ijpharm.2017.09.05910.1016/j.ijpharm.2017.09.05928943208Search in Google Scholar

101. I. I. Abu Hashim, N. F. Abo El-Magd, A. R. El-Sheakh and M. F. Hamed, Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: ex vivo–in vivo evaluation study, Int. J. Nanomedicine13 (2018) 1059–1079; https://doi.org/10.2147/IJN.S15641210.2147/IJN.S156412582475929503541Search in Google Scholar

102. A. Manosroi, C. Chankhampan, W. Manosroi and J. Manosroi, Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment, Eur. J. Pharm. Sci. 48 (2013) 474–483; https://doi.org/10.1016/j.ejps.2012.12.01010.1016/j.ejps.2012.12.01023266464Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo