[1. W. J. Liu, T. Zhang, Q. L. Guo, C. Y. Liu and Y. Q. Bai, Effect of ATRA on the expression of HOXA5 gene in K562 cells and its relationship with cell cycle and apoptosis, Mol. Med. Rep. 13 (2016) 4221–4228; 10.3892/mmr.2016.508610.3892/mmr.2016.5086483814627052693]Search in Google Scholar
[2. K. Yata, Y. Sadahira, T. Otsuki, H. Sakaguchi, Y. Isozaki and M. Uno, Cell cycle analysis and expression of cell cycle regulator genes in myeloma cells overexpressing cyclin D1, Br. J. Haematol.114 (2001) 591–599.10.1046/j.1365-2141.2001.02990.x11552984]Search in Google Scholar
[3. B. T. Gjertsen and H. Wiig, Investigation of therapy resistance mechanisms in myeloid leukemia by protein profiling of bone marrow extracellular fluid, Expert Rev. Proteomics9 (2012) 595–598; https://doi.org/10.1586/epr.12.5510.1586/epr.12.5523256670]Search in Google Scholar
[4. W. Ni, W. Qian and X. Tong, Cryptotanshinone induces apoptosis of HL-60 cells via mitochondrial pathway, Trop. J. Pharm. Res.13 (2014) 545–551.10.4314/tjpr.v13i4.9]Search in Google Scholar
[5. S. Agrawal, M. Unterberg, S. Koschmieder, U. zur Stadt, U. Brunnberg, W. Verbeek, T. Büchner, W. E. Berdel, H. Serve and C. Müller-Tidow, DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia, Cancer Res. 67 (2007) 1370–1377; https://doi.org/10.1158/0008-5472.CAN-06-168110.1158/0008-5472.CAN-06-168117283175]Search in Google Scholar
[6. Q. Y. Lu, Y. S. Jin, Z. F. Zhang, A. D. Le, D. Heber, F. P. Li, S. M. Dubinett and J. Y. Rao, Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annex-in-I in actin remodeling, Lab. Investig.87 (2007) 456–465; http://doi.org/10.1038/labinvest.370053410.1038/labinvest.370053417351649]Search in Google Scholar
[7. S. H. Xia, L. P. Hu, H. Hu, W. T. Ying, X. Xu, Y. Cai, Y. L. Han, B. S. Chen, F. Wei, X. H. Qian, Y. Y. Cai, Y. Shen, M. Wu and M. R. Wang, Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas, Onco-gene21 (2002) 6641–664810.1038/sj.onc.120581812242662]Search in Google Scholar
[8. R. Luthra, R. R. Singh, M. G. Luthra, Y. X. Li, C. Hannah, A. M. Romans, B. A. Barkoh, S. S. Chen, J. Enros, D. M. Maru, R. R. Boraddus, A. Rashid and C. T. Albarracin, MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers, Oncogene27 (2008) 6667–6678; https://doi.org/10.1038/onc.2008.25610.1038/onc.2008.25618663355]Search in Google Scholar
[9. R. Duncan, B. Carpenter, L. C. Main, C. Telfer and G. I. Murray, Characterisation and protein expression profiling of annexins in colorectal cancer, Br. J. Cancer. 98 (2008) 426–433; https://doi.org/10.1038/sj.bjc.660412810.1038/sj.bjc.6604128236145018071363]Search in Google Scholar
[10. R. Belvedere, V. Bizzarro, G. Forte, F. D. Piaz, L. Parente and A. Petrella, Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of formyl peptide receptor pathway, Sci. Reports6 (2016) 1–14.]Search in Google Scholar
[11. W. Ahmad, E. Kumolosasi, I. Jantan, M. Jasamai and E. Salim, Modulatory effect of phytoestrogens and curcumin on induction of annexin 1 in human peripheral blood mononuclear cells and their inhibitory effect on secretory phospholipase A2, Trop. J. Pharm. Res.13 (2014) 171–177; https://doi.org/10.4314/tjpr.v13i2.110.4314/tjpr.v13i2.1]Search in Google Scholar
[12. L. Parente and E. Solito, Annexin 1: More than an anti-phospholipase protein, Inflamm. Res. 53 (2004) 125–132; https://doi.org/10.1007/s00011-003-1235-z10.1007/s00011-003-1235-z]Search in Google Scholar
[13. L. H. K. Lim and S. Pervaiz, Annexin 1 : the new face of an old molecule, FASEB J.24 (2007) 968–975; https://doi.org/10.1096/fj.06-7464rev10.1096/fj.06-7464rev]Search in Google Scholar
[14. C. Guo, S. Liu and M-Z. Sun, Potential role of Anxa1 in cancer, Futur. Oncol. 9 (2013) 1773–1793; https://doi.org/10.2217/fon.13.11410.2217/fon.13.114]Search in Google Scholar
[15. S. Canaider, E. Solito, C. de Coupade, R. J, Flower, F. Russo-Marie, N. J. Goulding and M. Peretti, Increased apoptosis in U937 cells over-expressing lipocortin 1 (Annexin I), Life Sci. 66 (2000) PL265-PL27010.1016/S0024-3205(00)00500-2]Search in Google Scholar
[16. E. Solito E, C. De Coupade, S. Canaider, N. J. Goulding and M. Perretti, Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation, Br. J. Pharmacol. 13 (2001) 217–228; https://doi.org/10.1038/sj.bjp.070405410.1038/sj.bjp.0704054157277611350857]Search in Google Scholar
[17. F. Hirata, Molecular targets, cancer chemoprevention, and dietary phytochemicals: Nuclear annexin A1 as a promising new molecular target of cancer chemoprevention, Austin J. Pharmacol. Ther.2 (2014) 2–3.]Search in Google Scholar
[18. A. Petrella, C. W. D’Acunto, M. Rodriquez, M. Festa, A, Tosco, I. Bruno, S. Terracciano, M. Taddei, L. G. Paloma and L. Parente, Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: Role of annexin, Eur. J. Cancer.44 (2008) 740–749; https://doi.org/10.1016/j.ejca.2008.01.02310.1016/j.ejca.2008.01.02318295477]Search in Google Scholar
[19. C. L. Rackham, A. E. Vargas, R. G. Hawkes, S. Amisten, S. J. Persaud, A. L. Austin, A. J. King and P. M. Jones, Annexin A1 is a key modulator of mesenchymal stromal cell-mediated improvements in islet function, Diabetes65 (2016) 129–139; https://doi.org/10.2337/db15-099010.2337/db15-099026470781]Search in Google Scholar
[20. G. S. D. Purvis, F. Chiazza, J. Chen, R. Azevedo-Loiola, K. Martin, D. H. M. Kusters, C. C. Reutelingsperger, N. Fountoulakis, L. Gnudi, M. M. Yaqoob, M. Collino, C. Thiemermann and E. Solito, Annexin A1 attenuates microvascular complications through restoration of Akt signalling in a murine model of type 1 diabetes, Diabetologia61 (2018) 482–495; https://doi.org/10.1007/s00125-017-4469-y10.1007/s00125-017-4469-y644895529085990]Search in Google Scholar
[21. E. Cristante, S. McArthur, C. Mauro, E. Maggioli, I. A. Romero, M. Wylezinska-Arridge, P. O. Couraud, J. lopez-Tremoleda, H. C. Christian, B. B. Weksler, A. Malaspina and E. Solito, Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications, Proc. Natl. Acad. Sci. USA110 (2012) 832–841; https://doi.org/10.1073/pnas.120936211010.1073/pnas.1209362110354909423277546]Search in Google Scholar
[22. M. Ries, R. Loiola, U. N. Shah, S. M. Gentleman, E. Solito and M. Sastre, The anti-inflammatory Annexin A1 induces the clearance and degradation of the amyloid-β peptide, J. Neuroinflammation (2016) 1–15; https://doi.org/10.1186/s12974-016-0692-610.1186/s12974-016-0692-6501075727590054]Search in Google Scholar
[23. M. F. Maioral, P. C. Gaspar, G. R. Rosa Souza, A. Mascarello, L. D. Chiaradia, M. A. Licínio, A. C. Moraes, R. A. Yunes, R. J. Nunes and M. C. Santos-Silva, Apoptotic events induced by synthetic naphthylchalcones in human acute leukemia cell lines, Biochimie95 (2013) 866–874; https://doi.org/10.1016/j.biochi.2012.12.00110.1016/j.biochi.2012.12.001]Search in Google Scholar
[24. M. Luczak, M. Kaźmierczak, L. Handschuh, K. Lewandowski, M. Komarnicki and M. Figlerowicz, Comparative proteome analysis of acute myeloid leukemia with and without maturation, J. Proteomics75 (2012) 5734–5748; https://doi.org/10.1016/j.jprot.2012.07.03010.1016/j.jprot.2012.07.030]Search in Google Scholar
[25. R. Debret, H. El Btaouri, L. Duca, I. Rahman, S. Radke, B. Haye, J. M. Sallenave and F. Antonicelli, Annexin A1 processing is associated with caspase-dependent apoptosis in BZR cells, FEBS Lett. 546 (2003) 195–202.10.1016/S0014-5793(03)00570-2]Search in Google Scholar
[26. J. P. Vago, C. R. Nogueira, L. P. Tavares, F. M. Soriani, F. Lopes, R. C. Russo, V. Pinho, M. M. Teixeira and L. P. Sousa, Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis, J. Leukoc. Biol.92 (2012) 249–258; http://doi.org/10.1189/jlb.011200810.1189/jlb.0112008]Search in Google Scholar
[27. G. Li, S. He, L. Chang, H. Lu, H. Zhang, H. Zhang and J. Chiu, GADD45α and annexin A1 are involved in the apoptosis of HL-60 induced by resveratrol, Phytomedicine18 (2011) 704–709; https://doi.org/10.1016/j.phymed.2010.11.01510.1016/j.phymed.2010.11.015]Search in Google Scholar
[28. R. N. Winter, A. Kramer, A. Borkowski and N. Kyprianou, Loss of caspase-1 and caspase-3 protein expression in human prostate cancer, Cancer Res. 61 (2001) 1227–1232.]Search in Google Scholar
[29. T. C. Reddy, D. B. Reddy, A. Aparna, K. M. Arunasree, G. Gupta, C. Achari, G. V. Reddy, V. Lakshmipathi, A. Subramanyam and P. Reddanna, Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-ĸB inactivation, Toxicol. In Vitro26 (2012) 396–405; https://doi.org/10.1016/j.tiv.2011.12.01810.1016/j.tiv.2011.12.018]Search in Google Scholar
[30. S. H. Ferreira, F. Q. Cunha, B. B. Lorenzetti, M. A. Michelin, M. Perretti, R. J. Flower and S. Poole, Role of lipocortin-1 in the anti-hyperalgesic actions of dexamethasone, Br. J. Pharmacol. 121 (1997) 883–888; https://doi.org/10.1038/sj.bjp.070121110.1038/sj.bjp.0701211]Search in Google Scholar
[31. Y. Nakanishi, R. Kamijo, K. Takizawa, M. Hatori and M. Nagumo, Inhibitors of cyclooxygenase-2 (COX-2) suppressed the proliferation and differentiation of human leukaemia cell lines, Eur. J. Cancer.37 (2001) 1570–1578.10.1016/S0959-8049(01)00160-5]Search in Google Scholar
[32. A. M. Saleh, A. Aljada, M. M. El-Abadelah, M. O. Taha, S. S. Sabri, J. A. Zahra and M. A. Aziz, The anticancer activity of the substituted pyridone-annelated isoindigo (5’-Cl) involves G0/G1 cell cycle arrest and inactivation of CDKs in the promyelocytic leukemia cell line HL-60, Cell Physiol. Biochem.35 (2015) 1943–1957; https://doi.org/10.1159/00037400310.1159/00037400325870953]Search in Google Scholar
[33. Y. Nagahara, Y. Matsuoka, K. Saito, M. Ikekita, S. Higuchi and T. Shinomiya, Coordinate involvement of cell cycle arrest and apoptosis strengthen the effect of FTY720, Jap. J. Cancer Res.92 (2001) 680–687.10.1111/j.1349-7006.2001.tb01148.x592676311429058]Search in Google Scholar
[34. R. A. Weinberg, p53 and Apoptosis: Master Guardian and Executioner, in The Biology of Cancer (Ed. R. A. Weinberg), 2nd ed, Garland Science, New York 2014. pp. 331–390.]Search in Google Scholar