This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Grundström, M., Hak, C., Chen, D., Hallquist, M., & Pleijel, H. (2015). Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air – Relationships with wind speed, vertical temperature gradient and weather type. Atmospheric Environment, 120, 317–327. https://doi.org/10.1016/j.atmosenv.2015.08.057GrundströmM.HakC.ChenD.HallquistM.PleijelH.2015Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air – Relationships with wind speed, vertical temperature gradient and weather typeAtmospheric Environment120317327https://doi.org/10.1016/j.atmosenv.2015.08.057Search in Google Scholar
Birinci, E., Deniz, A., & Özdemir, E. T. (2023). The relationship between PM10 and meteorological variables in the mega city Istanbul. Environmental Monitoring and Assessment, 195(2), 304. https://doi.org/10.1007/s10661-022-10866-3BirinciE.DenizA.ÖzdemirE. T.2023The relationship between PM10 and meteorological variables in the mega city IstanbulEnvironmental Monitoring and Assessment1952304https://doi.org/10.1007/s10661-022-10866-3Search in Google Scholar
Girotti, C., Fernando Kowalski, L., Silva, T., Correia, E., R. Prata Shimomura, A., Akira Kurokawa, F., & Lopes, A. (2025). Air pollution Dynamics: The role of meteorological factors in PM10 concentration patterns across urban areas. City and Environment Interactions, 25, 100184. https://doi.org/10.1016/j.cacint.2024.100184GirottiC.Fernando KowalskiL.SilvaT.CorreiaE.R. Prata ShimomuraA.Akira KurokawaF.LopesA.2025Air pollution Dynamics: The role of meteorological factors in PM10 concentration patterns across urban areasCity and Environment Interactions25100184https://doi.org/10.1016/j.cacint.2024.100184Search in Google Scholar
Kirešová, S., & Guzan, M. (2022). Determining the Correlation between Particulate Matter PM10 and Meteorological Factors. Eng, 3(3), 343–363. https://doi.org/10.3390/eng3030025KirešováS.GuzanM.2022Determining the Correlation between Particulate Matter PM10 and Meteorological FactorsEng33343363https://doi.org/10.3390/eng3030025Search in Google Scholar
Cichowicz, R., Wielgosiński, G., & Fetter, W. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry, 77(1–2), 35–48. https://doi.org/10.1007/s10874-020-09401-wCichowiczR.WielgosińskiG.FetterW.2020Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plantJournal of Atmospheric Chemistry771–23548https://doi.org/10.1007/s10874-020-09401-wSearch in Google Scholar
Lu, H., & Fang, G. (2002). Estimating the frequency distributions of PM10 and PM2.5 by the statistics of wind speed at Sha-Lu, Taiwan. The Science of The Total Environment, 298(1–3), 119–130. https://doi.org/10.1016/S0048-9697(02)00164-XLuH.FangG.2002Estimating the frequency distributions of PM10 and PM2.5 by the statistics of wind speed at Sha-Lu, TaiwanThe Science of The Total Environment2981–3119130https://doi.org/10.1016/S0048-9697(02)00164-XSearch in Google Scholar
United States Geological Survey. (b.d.). Annual National Land Cover Database (NLCD) Collection 1 Products. U.S. Geological Survey. https://doi.org/10.5066/P94UXNTSUnited States Geological Survey(b.d.).Annual National Land Cover Database (NLCD) Collection 1 ProductsU.S. Geological Surveyhttps://doi.org/10.5066/P94UXNTSSearch in Google Scholar
Probeck, M., Ruiz, I., Ramminger, G., Fourie, C., Maier, P., Ickerott, M., … Dufourmont, H. (2021). CLC+ Backbone: Set the Scene in Copernicus for the Coming Decade. W 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (s. 2076–2079). Zaprezentowano na 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. https://doi.org/10.1109/IGARSS47720.2021.9553252ProbeckM.RuizI.RammingerG.FourieC.MaierP.IckerottM.DufourmontH.2021CLC+ Backbone: Set the Scene in Copernicus for the Coming DecadeW 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (s. 2076–2079). Zaprezentowano na 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSShttps://doi.org/10.1109/IGARSS47720.2021.9553252Search in Google Scholar
Xian, G. (2007). Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. International Journal of Remote Sensing, 28(24), 5427–5445. https://doi.org/10.1080/01431160701227653XianG.2007Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observationsInternational Journal of Remote Sensing282454275445https://doi.org/10.1080/01431160701227653Search in Google Scholar
Tao, Z., Santanello, J. A., Chin, M., Zhou, S., Tan, Q., Kemp, E. M., & Peters-Lidard, C. D. (2013). Effect of land cover on atmospheric processes and air quality over the continental United States – a NASA Unified WRF (NU-WRF) model study. Atmospheric Chemistry and Physics, 13(13), 6207–6226. https://doi.org/10.5194/acp-13-6207-2013TaoZ.SantanelloJ. A.ChinM.ZhouS.TanQ.KempE. M.Peters-LidardC. D.2013Effect of land cover on atmospheric processes and air quality over the continental United States – a NASA Unified WRF (NU-WRF) model studyAtmospheric Chemistry and Physics131362076226https://doi.org/10.5194/acp-13-6207-2013Search in Google Scholar
Yang, W., & Jiang, X. (2021). Evaluating the influence of land use and land cover change on fine particulate matter. Scientific Reports, 11(1), 17612. https://doi.org/10.1038/s41598-021-97088-8YangW.JiangX.2021Evaluating the influence of land use and land cover change on fine particulate matterScientific Reports11117612https://doi.org/10.1038/s41598-021-97088-8Search in Google Scholar
Lu, Y., Yang, X., Wang, H., Jiang, M., Wen, X., Zhang, X., & Meng, L. (2023). Exploring the effects of land use and land cover changes on meteorology and air quality over Sichuan Basin, southwestern China. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1131389LuY.YangX.WangH.JiangM.WenX.ZhangX.MengL.2023Exploring the effects of land use and land cover changes on meteorology and air quality over Sichuan Basin, southwestern ChinaFrontiers in Ecology and Evolution11https://doi.org/10.3389/fevo.2023.1131389Search in Google Scholar
Yu, Y. T., Xiang, S., Li, R., Zhang, S., Zhang, K. M., Si, S., … Wu, Y. (2022). Characterizing spatial variations of city-wide elevated PM10 and PM2.5 concentrations using taxi-based mobile monitoring. The Science of the Total Environment, 829, 154478. https://doi.org/10.1016/j.scitotenv.2022.154478YuY. T.XiangS.LiR.ZhangS.ZhangK. M.SiS.WuY.2022Characterizing spatial variations of city-wide elevated PM10 and PM2.5 concentrations using taxi-based mobile monitoringThe Science of the Total Environment829154478https://doi.org/10.1016/j.scitotenv.2022.154478Search in Google Scholar
GUS. (2024, lipiec 22). Powierzchnia i ludność w przekroju terytorialnym w 2024 roku. stat.gov.pl. Access 21.12.2024, from https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/powierzchnia-i-ludnosc-w-przekroju-terytorialnym-w-2024-roku,7,21.htmlGUS2024lipiec22Powierzchnia i ludność w przekroju terytorialnym w 2024 rokustat.gov.pl. Access 21.12.2024, from https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/powierzchnia-i-ludnosc-w-przekroju-terytorialnym-w-2024-roku,7,21.htmlSearch in Google Scholar
Badyda, A., Krawczyk, P., Bihałowicz, J. S., Bralewska, K., Rogula-Kozłowska, W., Majewski, G., … Rogulski, M. (2020). Are BBQs Significantly Polluting Air in Poland? A Simple Comparison of Barbecues vs. Domestic Stoves and Boilers Emissions. Energies, 13(23), 6245. https://doi.org/10.3390/en13236245BadydaA.KrawczykP.BihałowiczJ. S.BralewskaK.Rogula-KozłowskaW.MajewskiG.RogulskiM.2020Are BBQs Significantly Polluting Air in Poland? A Simple Comparison of Barbecues vs. Domestic Stoves and Boilers EmissionsEnergies13236245https://doi.org/10.3390/en13236245Search in Google Scholar
GDDKiA. (2021). General Traffic Measurement (GPR) 2020/2021. Access 24.09.2023, from https://www.gov.pl/web/gddkia/generalny-pomiar-ruchu-20202021GDDKiA2021General Traffic Measurement (GPR) 2020/2021Access 24.09.2023, from https://www.gov.pl/web/gddkia/generalny-pomiar-ruchu-20202021Search in Google Scholar
Bihałowicz, J. S., Rogula-Kozłowska, W., Rogula-Kopiec, P., Świsłowski, P., Rajfur, M., & Olszowski, T. (2023). One-Year-Long, Comprehensive Analysis of PM Number and Mass Size Distributions in Warszawa (Poland). Ecological Chemistry and Engineering S, 30(4), 541–556. https://doi.org/10.2478/eces-2023-0047BihałowiczJ. S.Rogula-KozłowskaW.Rogula-KopiecP.ŚwisłowskiP.RajfurM.OlszowskiT.2023One-Year-Long, Comprehensive Analysis of PM Number and Mass Size Distributions in Warszawa (Poland)Ecological Chemistry and Engineering S304541556https://doi.org/10.2478/eces-2023-0047Search in Google Scholar
Miłek, D. (2018). Spatial differentiation in the social and economic development level in Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 487–507.MiłekD.2018Spatial differentiation in the social and economic development level in Poland. EquilibriumQuarterly Journal of Economics and Economic Policy133487507Search in Google Scholar
Raszka, B., Dzieżyc, H., & Hełdak, M. (2021). Assessment of the Development Potential of Post-Industrial Areas in Terms of Social, Economic and Environmental Aspects: The Case of Wałbrzych Region (Poland). Energies, 14(15), 4562. https://doi.org/10.3390/en14154562RaszkaB.DzieżycH.HełdakM.2021Assessment of the Development Potential of Post-Industrial Areas in Terms of Social, Economic and Environmental Aspects: The Case of Wałbrzych Region (Poland)Energies14154562https://doi.org/10.3390/en14154562Search in Google Scholar
IMGW-PIB. (2024). Dane publiczne. Pobrano 21 grudzień 2024, z https://danepubliczne.imgw.pl/enIMGW-PIB2024Dane publicznePobrano 21 grudzień 2024, z https://danepubliczne.imgw.pl/enSearch in Google Scholar
Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Ośródka, L., Krajny, E., Błaszczak, B., & Mathews, B. (2014). Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Quality, Atmosphere & Health, 7(1), 41–58. https://doi.org/10.1007/s11869-013-0222-yRogula-KozłowskaW.KlejnowskiK.Rogula-KopiecP.OśródkaL.KrajnyE.BłaszczakB.MathewsB.2014Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in PolandAir Quality, Atmosphere & Health714158https://doi.org/10.1007/s11869-013-0222-ySearch in Google Scholar
Sówka, I., Chlebowska-Styś, A., Pachurka, Ł., & Rogula-Kozłowska, W. (2018). Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni): First studies in Poznań (Poland). Archives of Environmental Protection, 44(4), 86–95. https://doi.org/10.24425/aep.2018.122305SówkaI.Chlebowska-StyśA.PachurkaŁ.Rogula-KozłowskaW.2018Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni): First studies in Poznań (Poland)Archives of Environmental Protection4448695https://doi.org/10.24425/aep.2018.122305Search in Google Scholar
GIOŚ. (2025). Portal Jakość Powietrza. Pobrano 16 luty 2025, z https://powietrze.gios.gov.pl/pjp/homeGIOŚ2025Portal Jakość PowietrzaPobrano 16 luty 2025, z https://powietrze.gios.gov.pl/pjp/homeSearch in Google Scholar
POLSA. (2022, luty 4). Nowe mapy pokrycia terenu i ortofotomapa udostępnione na geoportalu. Pobrano 5 wrzesień 2022, z https://polsa.gov.pl/wydarzenia/nowe-mapy-pokrycia-terenu-i-ortofotomapa-udostepnione-na-geoportalu/POLSA2022luty4Nowe mapy pokrycia terenu i ortofotomapa udostępnione na geoportaluPobrano 5 wrzesień 2022, z https://polsa.gov.pl/wydarzenia/nowe-mapy-pokrycia-terenu-i-ortofotomapa-udostepnione-na-geoportalu/Search in Google Scholar
GUGiK. (2025). Download service (WCS). geoportal.gov.pl. Pobrano 7 styczeń 2025, z Ms. Coco GengGUGiK2025Download service (WCS)geoportal.gov.pl. Pobrano 7 styczeń 2025, z Ms. Coco GengSearch in Google Scholar
Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, M., … Schauer, P. (2020). Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sensing, 12(21), 3523. https://doi.org/10.3390/rs12213523MalinowskiR.LewińskiS.RybickiM.GromnyE.JenerowiczM.KrupińskiM.SchauerP.2020Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 ImageryRemote Sensing12213523https://doi.org/10.3390/rs12213523Search in Google Scholar
POLSA. (2024). Mapa pokrycia terenu. Baza wiedzy. Pobrano 21 grudzień 2024, z https://nsisplatforma.polsa.gov.pl/baza-wiedzy/produkty-satelitarne/mptPOLSA2024Mapa pokrycia terenu. Baza wiedzyPobrano 21 grudzień 2024, z https://nsisplatforma.polsa.gov.pl/baza-wiedzy/produkty-satelitarne/mptSearch in Google Scholar
QGIS Development Team. (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. ver 3.22 Białowieża. Pobrano z http://qgis.osgeo.orgQGIS Development Team2021QGIS Geographic Information SystemOpen Source Geospatial Foundation Project. ver 3.22 Białowieża. Pobrano z http://qgis.osgeo.orgSearch in Google Scholar
GRETL. (2024, grudzień 12). gretl. Pobrano 21 grudzień 2024, z https://gretl.sourceforge.net/GRETL2024grudzień12gretl. Pobrano 21 grudzień 2024, z https://gretl.sourceforge.net/Search in Google Scholar
GIOŚ. (2023). Portal Jakość Powietrza GIOŚ. Pobrano 30 wrzesień 2024, z http://powietrze.gios.gov.pl/pjp/homeGIOŚ2023Portal Jakość Powietrza GIOŚPobrano 30 wrzesień 2024, z http://powietrze.gios.gov.pl/pjp/homeSearch in Google Scholar
GUGiK. (2022). View services (WMS and WMTS). geoportal.gov.pl. Pobrano 11 październik 2022, z https://www.geoportal.gov.pl/uslugi/usluga-przegladania-wmsGUGiK2022View services (WMS and WMTS)geoportal.gov.pl. Pobrano 11 październik 2022, z https://www.geoportal.gov.pl/uslugi/usluga-przegladania-wmsSearch in Google Scholar
Główny Urząd Geodezji i Kartografii. (2022, wrzesień). Usługi pobierania WFS. geoportal.gov.pl. Pobrano z https://www.geoportal.gov.pl/uslugi/usluga-pobierania-wfsGłówny Urząd Geodezji i Kartografii2022wrzesieńUsługi pobierania WFSgeoportal.gov.pl. Pobrano z https://www.geoportal.gov.pl/uslugi/usluga-pobierania-wfsSearch in Google Scholar
Al-Hemoud, A., Al-Khayat, A., Al-Dashti, H., Li, J., Alahmad, B., & Koutrakis, P. (2021). PM2.5 and PM10 during COVID-19 lockdown in Kuwait: Mixed effect of dust and meteorological covariates. Environmental Challenges, 5, 100215. https://doi.org/10.1016/j.envc.2021.100215Al-HemoudA.Al-KhayatA.Al-DashtiH.LiJ.AlahmadB.KoutrakisP.2021PM2.5 and PM10 during COVID-19 lockdown in Kuwait: Mixed effect of dust and meteorological covariatesEnvironmental Challenges5100215https://doi.org/10.1016/j.envc.2021.100215Search in Google Scholar
Bukowski, J., & Van Den Heever, S. C. (2022). The Impact of Land Surface Properties on Haboobs and Dust Lofting. Journal of the Atmospheric Sciences, 79(12), 3195–3218. https://doi.org/10.1175/JAS-D-22-0001.1BukowskiJ.Van Den HeeverS. C.2022The Impact of Land Surface Properties on Haboobs and Dust LoftingJournal of the Atmospheric Sciences791231953218https://doi.org/10.1175/JAS-D-22-0001.1Search in Google Scholar
Raupach, M., & Lu, H. (2004). Representation of land-surface processes in aeolian transport models. Environmental Modelling & Software, 19(2), 93–112. https://doi.org/10.1016/S1364-8152(03)00113-0RaupachM.LuH.2004Representation of land-surface processes in aeolian transport modelsEnvironmental Modelling & Software19293112https://doi.org/10.1016/S1364-8152(03)00113-0Search in Google Scholar
Kim, D., Chin, M., Bian, H., Tan, Q., Brown, M. E., Zheng, T., … Kucsera, T. (2013). The effect of the dynamic surface bareness on dust source function, emission, and distribution. Journal of Geophysical Research: Atmospheres, 118(2), 871–886. https://doi.org/10.1029/2012JD017907KimD.ChinM.BianH.TanQ.BrownM. E.ZhengT.KucseraT.2013The effect of the dynamic surface bareness on dust source function, emission, and distributionJournal of Geophysical Research: Atmospheres1182871886https://doi.org/10.1029/2012JD017907Search in Google Scholar
Garcia-Carreras, L., Marsham, J. H., Stratton, R. A., & Tucker, S. (2021). Capturing convection essential for projections of climate change in African dust emission. npj Climate and Atmospheric Science, 4(1), 44. https://doi.org/10.1038/s41612-021-00201-xGarcia-CarrerasL.MarshamJ. H.StrattonR. A.TuckerS.2021Capturing convection essential for projections of climate change in African dust emissionnpj Climate and Atmospheric Science4144https://doi.org/10.1038/s41612-021-00201-xSearch in Google Scholar
Qi, S., Ren, X., Dang, X., & Meng, Z. (2023). Mechanisms of dust emissions from lakes during different drying stages in a semi-arid grassland in northern China. Frontiers in Environmental Science, 10, 1110679. https://doi.org/10.3389/fenvs.2022.1110679QiS.RenX.DangX.MengZ.2023Mechanisms of dust emissions from lakes during different drying stages in a semi-arid grassland in northern ChinaFrontiers in Environmental Science101110679https://doi.org/10.3389/fenvs.2022.1110679Search in Google Scholar
Nejad, M. T., Ghalehteimouri, K. J., Talkhabi, H., & Dolatshahi, Z. (2023). The relationship between atmospheric temperature inversion and urban air pollution characteristics: a case study of Tehran, Iran. Discover Environment, 1(1), 17. https://doi.org/10.1007/s44274-023-00018-wNejadM. T.GhalehteimouriK. J.TalkhabiH.DolatshahiZ.2023The relationship between atmospheric temperature inversion and urban air pollution characteristics: a case study of Tehran, IranDiscover Environment1117https://doi.org/10.1007/s44274-023-00018-wSearch in Google Scholar
Staehle, C., Mayer, M., Kirchsteiger, B., Klaus, V., Kult-Herdin, J., Schmidt, C., … Rieder, H. E. (2022). Quantifying changes in ambient NOx, O3 and PM10 concentrations in Austria during the COVID-19 related lockdown in spring 2020. Air Quality, Atmosphere & Health, 15(11), 1993–2007. https://doi.org/10.1007/s11869-022-01232-wStaehleC.MayerM.KirchsteigerB.KlausV.Kult-HerdinJ.SchmidtC.RiederH. E.2022Quantifying changes in ambient NOx, O3 and PM10 concentrations in Austria during the COVID-19 related lockdown in spring 2020Air Quality, Atmosphere & Health151119932007https://doi.org/10.1007/s11869-022-01232-wSearch in Google Scholar
Yavuz, V. (2024). Unveiling the impact of temperature inversions on air quality: a comprehensive analysis of polluted and severe polluted days in Istanbul. Acta Geophysica. https://doi.org/10.1007/s11600-024-01417-0YavuzV.2024Unveiling the impact of temperature inversions on air quality: a comprehensive analysis of polluted and severe polluted days in IstanbulActa Geophysicahttps://doi.org/10.1007/s11600-024-01417-0Search in Google Scholar
Lagmiri, S., & Dahech, S. (2024). Temperature Inversion and Particulate Matter Concentration in the Low Troposphere of Cergy-Pontoise (Parisian Region). Atmosphere, 15(3), 349. https://doi.org/10.3390/atmos15030349LagmiriS.DahechS.2024Temperature Inversion and Particulate Matter Concentration in the Low Troposphere of Cergy-Pontoise (Parisian Region)Atmosphere153349https://doi.org/10.3390/atmos15030349Search in Google Scholar
Thomsen, D., Iversen, E. M., Skønager, J. T., Luo, Y., Li, L., Roldin, P., … Glasius, M. (2024). The effect of temperature and relative humidity on secondary organic aerosol formation from ozonolysis of 3 - carene. Environmental Science: Atmospheres, 4(1), 88–103. https://doi.org/10.1039/D3EA00128HThomsenD.IversenE. M.SkønagerJ. T.LuoY.LiL.RoldinP.GlasiusM.2024The effect of temperature and relative humidity on secondary organic aerosol formation from ozonolysis of 3 - careneEnvironmental Science: Atmospheres4188103https://doi.org/10.1039/D3EA00128HSearch in Google Scholar
Deng, Y., Inomata, S., Sato, K., Ramasamy, S., Morino, Y., Enami, S., & Tanimoto, H. (2021). Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber system. Atmospheric Chemistry and Physics, 21(8), 5983–6003. https://doi.org/10.5194/acp-21-5983-2021DengY.InomataS.SatoK.RamasamyS.MorinoY.EnamiS.TanimotoH.2021Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber systemAtmospheric Chemistry and Physics21859836003https://doi.org/10.5194/acp-21-5983-2021Search in Google Scholar
US EPA. (1995). AP-42: Compilation of Air Pollutant Emission Factors.US EPA1995AP-42: Compilation of Air Pollutant Emission FactorsSearch in Google Scholar
Jandacka, D., Durcanska, D., Nicolanska, M., & Holubcik, M. (2024). Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial Analysis. Fire, 7(4), 150. https://doi.org/10.3390/fire7040150JandackaD.DurcanskaD.NicolanskaM.HolubcikM.2024Impact of Seasonal Heating on PM10 and PM2.5 Concentrations in Sučany, Slovakia: A Temporal and Spatial AnalysisFire74150https://doi.org/10.3390/fire7040150Search in Google Scholar
Salva, J., Poništ, J., Rasulov, O., Schwarz, M., Vanek, M., & Sečkár, M. (2023). The impact of heating systems scenarios on air pollution at selected residential zone: a case study using AERMOD dispersion model. Environmental Sciences Europe, 35(1), 91. https://doi.org/10.1186/s12302-023-00798-1SalvaJ.PoništJ.RasulovO.SchwarzM.VanekM.SečkárM.2023The impact of heating systems scenarios on air pollution at selected residential zone: a case study using AERMOD dispersion modelEnvironmental Sciences Europe35191https://doi.org/10.1186/s12302-023-00798-1Search in Google Scholar
Senyel Kurkcuoglu, M. A., & Zengin, B. N. (2021). Spatio-Temporal Modelling of the Change of Residential-Induced PM10 Pollution through Substitution of Coal with Natural Gas in Domestic Heating. Sustainability, 13(19), 10870. https://doi.org/10.3390/su131910870Senyel KurkcuogluM. A.ZenginB. N.2021Spatio-Temporal Modelling of the Change of Residential-Induced PM10 Pollution through Substitution of Coal with Natural Gas in Domestic HeatingSustainability131910870https://doi.org/10.3390/su131910870Search in Google Scholar
Wang, F., Carmichael, G. R., Wang, J., Chen, B., Huang, B., Li, Y., … Gao, M. (2022). Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing. Atmospheric Chemistry and Physics, 22(20), 13341–13353. https://doi.org/10.5194/acp-22-13341-2022WangF.CarmichaelG. R.WangJ.ChenB.HuangB.LiY.GaoM.2022Circulation-regulated impacts of aerosol pollution on urban heat island in BeijingAtmospheric Chemistry and Physics22201334113353https://doi.org/10.5194/acp-22-13341-2022Search in Google Scholar
Yang, G., Ren, G., Zhang, P., Xue, X., Tysa, S. K., Jia, W., … Zhang, S. (2021). PM2.5 Influence on Urban Heat Island (UHI) Effect in Beijing and the Possible Mechanisms. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD035227. https://doi.org/10.1029/2021JD035227YangG.RenG.ZhangP.XueX.TysaS. K.JiaW.ZhangS.2021PM2.5 Influence on Urban Heat Island (UHI) Effect in Beijing and the Possible MechanismsJournal of Geophysical Research: Atmospheres12617e2021JD035227. https://doi.org/10.1029/2021JD035227Search in Google Scholar
Rao, V. L. (2014). Effects of Urban Heat Island on Air pollution Concentrations. Int.J.Curr.Microbiol.App.Sci. Pobrano z https://www.ijcmas.com/vol-3-10/Vennapu%20Lakshmana%20Rao.pdf?utm_source=chatgpt.comRaoV. L.2014Effects of Urban Heat Island on Air pollution ConcentrationsInt.J.Curr.Microbiol.App.SciPobrano z https://www.ijcmas.com/vol-3-10/Vennapu%20Lakshmana%20Rao.pdf?utm_source=chatgpt.comSearch in Google Scholar
Zhou, Y., Yue, Y., Bai, Y., & Zhang, L. (2020). Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze River. Advances in Meteorology, 2020, 1–10. https://doi.org/10.1155/2020/2398146ZhouY.YueY.BaiY.ZhangL.2020Effects of Rainfall on PM2.5 and PM10 in the Middle Reaches of the Yangtze RiverAdvances in Meteorology2020110https://doi.org/10.1155/2020/2398146Search in Google Scholar
Maboa, R., Yessoufou, K., Tesfamichael, S., & Shiferaw, Y. A. (2022). Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes. Scientific Reports, 12(1), 17467. https://doi.org/10.1038/s41598-022-22558-6MaboaR.YessoufouK.TesfamichaelS.ShiferawY. A.2022Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processesScientific Reports12117467https://doi.org/10.1038/s41598-022-22558-6Search in Google Scholar
Olszowski, T. (2016). Changes in PM10 concentration due to large-scale rainfall. Arabian Journal of Geosciences, 9(2), 160. https://doi.org/10.1007/s12517-015-2163-2OlszowskiT.2016Changes in PM10 concentration due to large-scale rainfallArabian Journal of Geosciences92160https://doi.org/10.1007/s12517-015-2163-2Search in Google Scholar
Widziewicz, K., Rogula-Kozłowska, W., Rogula-Kopiec, P., Majewski, G., & Loska, K. (2017). PM1 and PM1-Bound Metals During Dry and Wet Periods: Ambient Concentration and Health Effects. Environmental Engineering Science, 34(5), 312–320. https://doi.org/10.1089/ees.2016.0202WidziewiczK.Rogula-KozłowskaW.Rogula-KopiecP.MajewskiG.LoskaK.2017PM1 and PM1-Bound Metals During Dry and Wet Periods: Ambient Concentration and Health EffectsEnvironmental Engineering Science345312320https://doi.org/10.1089/ees.2016.0202Search in Google Scholar
Won, W.-S., Oh, R., Lee, W., Kim, K.-Y., Ku, S., Su, P.-C., & Yoon, Y.-J. (2020). Impact of Fine Particulate Matter on Visibility at Incheon International Airport, South Korea. Aerosol and Air Quality Research, 1048–1061. https://doi.org/10.4209/aaqr.2019.03.0106WonW.-S.OhR.LeeW.KimK.-Y.KuS.SuP.-C.YoonY.-J.2020Impact of Fine Particulate Matter on Visibility at Incheon International Airport, South KoreaAerosol and Air Quality Research10481061https://doi.org/10.4209/aaqr.2019.03.0106Search in Google Scholar
Maurer, M., Klemm, O., Lokys, H. L., & Lin, N.-H. (2019). Trends of Fog and Visibility in Taiwan: Climate Change or Air Quality Improvement? Aerosol and Air Quality Research, 19(4), 896–910. https://doi.org/10.4209/aaqr.2018.04.0152MaurerM.KlemmO.LokysH. L.LinN.-H.2019Trends of Fog and Visibility in Taiwan: Climate Change or Air Quality Improvement?Aerosol and Air Quality Research194896910https://doi.org/10.4209/aaqr.2018.04.0152Search in Google Scholar
Majewski, G., Szeląg, B., Mach, T., Rogula-Kozłowska, W., Anioł, E., Bihałowicz, J., … Bihałowicz, J. S. (2021). Predicting the Number of Days With Visibility in a Specific Range in Warsaw (Poland) Based on Meteorological and Air Quality Data. Frontiers in Environmental Science, 9, 623094. https://doi.org/10.3389/fenvs.2021.623094MajewskiG.SzelągB.MachT.Rogula-KozłowskaW.AniołE.BihałowiczJ.BihałowiczJ. S.2021Predicting the Number of Days With Visibility in a Specific Range in Warsaw (Poland) Based on Meteorological and Air Quality DataFrontiers in Environmental Science9623094https://doi.org/10.3389/fenvs.2021.623094Search in Google Scholar
Majewski, G., Szeląg, B., Rogula-Kozłowska, W., Rogula-Kopiec, P., Brandyk, A., Rybak, J., … Klik, B. (2024). Machine learning analysis of PM1 impact on visibility with comprehensive sensitivity evaluation of concentration, composition, and meteorological factors. Scientific Reports, 14(1), 16732. https://doi.org/10.1038/s41598-024-67576-8MajewskiG.SzelągB.Rogula-KozłowskaW.Rogula-KopiecP.BrandykA.RybakJ.KlikB.2024Machine learning analysis of PM1 impact on visibility with comprehensive sensitivity evaluation of concentration, composition, and meteorological factorsScientific Reports14116732https://doi.org/10.1038/s41598-024-67576-8Search in Google Scholar
Chalvatzaki, E., Aleksandropoulou, V., Glytsos, T., & Lazaridis, M. (2012). The effect of dust emissions from open storage piles to particle ambient concentration and human exposure. Waste Management, 32(12), 2456–2468. https://doi.org/10.1016/j.wasman.2012.06.005ChalvatzakiE.AleksandropoulouV.GlytsosT.LazaridisM.2012The effect of dust emissions from open storage piles to particle ambient concentration and human exposureWaste Management321224562468https://doi.org/10.1016/j.wasman.2012.06.005Search in Google Scholar
Yang, J., Li, X., Wang, W., Chai, H., An, M., & Dai, Q. (2024). The Mechanism of Dust Transportation Based on Wind Tunnel Experiments and Numerical Simulations. Water, 16(7), 1006. https://doi.org/10.3390/w16071006YangJ.LiX.WangW.ChaiH.AnM.DaiQ.2024The Mechanism of Dust Transportation Based on Wind Tunnel Experiments and Numerical SimulationsWater1671006https://doi.org/10.3390/w16071006Search in Google Scholar
Bihałowicz, J., Rogula-Kozłowska, W., Gromek, P., & Bihałowicz, J. S. (2024). What is the actual composition of specific land cover? An evaluation of the accuracy at a national scale – Remote sensing in comparison to topographic land cover. Remote Sensing Applications: Society and Environment, 36, 101319. https://doi.org/10.1016/j.rsase.2024.101319BihałowiczJ.Rogula-KozłowskaW.GromekP.BihałowiczJ. S.2024What is the actual composition of specific land cover? An evaluation of the accuracy at a national scale – Remote sensing in comparison to topographic land coverRemote Sensing Applications: Society and Environment36101319https://doi.org/10.1016/j.rsase.2024.101319Search in Google Scholar
Klejnowski, K., Krasa, A., Rogula-Kozłowska, W., & Błaszczak, B. (2013). Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months) Measurements. The Scientific World Journal, 2013, 1–13. https://doi.org/10.1155/2013/539568KlejnowskiK.KrasaA.Rogula-KozłowskaW.BłaszczakB.2013Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months) MeasurementsThe Scientific World Journal2013113https://doi.org/10.1155/2013/539568Search in Google Scholar
Rybak, J., Wróbel, M., Stefan Bihałowicz, J., & Rogula-Kozłowska, W. (2020). Selected Metals in Urban Road Dust: Upper and Lower Silesia Case Study. Atmosphere, 11(3), 290. https://doi.org/10.3390/atmos11030290RybakJ.WróbelM.Stefan BihałowiczJ.Rogula-KozłowskaW.2020Selected Metals in Urban Road Dust: Upper and Lower Silesia Case StudyAtmosphere113290https://doi.org/10.3390/atmos11030290Search in Google Scholar
Edwards, R., Karnani, S., Fisher, E. M., Johnson, M., Naeher, L., Smith, K. R., & Morawska, L. (2014). Review 2: emissions of health-damaging pollutants from household stoves. WHO Indoor Air Quality Guidelines: Household fuel Combustion.EdwardsR.KarnaniS.FisherE. M.JohnsonM.NaeherL.SmithK. R.MorawskaL.2014Review 2: emissions of health-damaging pollutants from household stoves. WHO Indoor Air Quality Guidelines: Household fuel CombustionSearch in Google Scholar
Martins, N. R., & Carrilho Da Graça, G. (2023). Health effects of PM2.5 emissions from woodstoves and fireplaces in living spaces. Journal of Building Engineering, 79, 107848. https://doi.org/10.1016/j.jobe.2023.107848MartinsN. R.Carrilho Da GraçaG.2023Health effects of PM2.5 emissions from woodstoves and fireplaces in living spacesJournal of Building Engineering79107848https://doi.org/10.1016/j.jobe.2023.107848Search in Google Scholar
Chalvatzaki, E., Kopanakis, I., Kontaksakis, M., Glytsos, T., Kalogerakis, N., & Lazaridis, M. (2010). Measurements of particulate matter concentrations at a landfill site (Crete, Greece). Waste Management, 30(11), 2058–2064. https://doi.org/10.1016/j.wasman.2010.05.025ChalvatzakiE.KopanakisI.KontaksakisM.GlytsosT.KalogerakisN.LazaridisM.2010Measurements of particulate matter concentrations at a landfill site (Crete, Greece)Waste Management301120582064https://doi.org/10.1016/j.wasman.2010.05.025Search in Google Scholar
Brown, A., Barrett, J. E. S., Robinson, H., & Potgieter-Vermaak, S. (2015). Risk assessment of exposure to particulate output of a demolition site. Environmental Geochemistry and Health, 37(4), 675–687. https://doi.org/10.1007/s10653-015-9747-3BrownA.BarrettJ. E. S.RobinsonH.Potgieter-VermaakS.2015Risk assessment of exposure to particulate output of a demolition siteEnvironmental Geochemistry and Health374675687https://doi.org/10.1007/s10653-015-9747-3Search in Google Scholar
Azarmi, F., & Kumar, P. (2016). Ambient exposure to coarse and fine particle emissions from building demolition. Atmospheric Environment, 137, 62–79. https://doi.org/10.1016/j.atmosenv.2016.04.029AzarmiF.KumarP.2016Ambient exposure to coarse and fine particle emissions from building demolitionAtmospheric Environment1376279https://doi.org/10.1016/j.atmosenv.2016.04.029Search in Google Scholar
Marando, F., Salvatori, E., Fusaro, L., & Manes, F. (2016). Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome. Forests, 7(7), 150. https://doi.org/10.3390/f7070150MarandoF.SalvatoriE.FusaroL.ManesF.2016Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of RomeForests77150https://doi.org/10.3390/f7070150Search in Google Scholar
Pace, R., & Grote, R. (2020). Deposition and Resuspension Mechanisms Into and From Tree Canopies: A Study Modeling Particle Removal of Conifers and Broadleaves in Different Cities. Frontiers in Forests and Global Change, 3, 26. https://doi.org/10.3389/ffgc.2020.00026PaceR.GroteR.2020Deposition and Resuspension Mechanisms Into and From Tree Canopies: A Study Modeling Particle Removal of Conifers and Broadleaves in Different CitiesFrontiers in Forests and Global Change326https://doi.org/10.3389/ffgc.2020.00026Search in Google Scholar
Popek, R., Łukowski, A., & Karolewski, P. (2017). Particulate matter accumulation – further differences between native Prunus padusand non-native P. serotina. Dendrobiology, 78, 85–95. https://doi.org/10.12657/denbio.078.009PopekR.ŁukowskiA.KarolewskiP.2017Particulate matter accumulation – further differences between native Prunus padusand non-native P. serotinaDendrobiology788595https://doi.org/10.12657/denbio.078.009Search in Google Scholar
Trees Improve Air Quality | Edmond, OK - Official Website. (b.d.). Pobrano 8 styczeń 2025, z https://www.edmondok.gov/1234/Trees-Improve-Air-QualityTrees Improve Air Quality | Edmond, OK - Official Website(b.d.). Pobrano 8 styczeń 2025, z https://www.edmondok.gov/1234/Trees-Improve-Air-QualitySearch in Google Scholar
Kivimäenpää, M., Riikonen, J., Valolahti, H., Elina, H., Holopainen, J. K., & Holopainen, T. (2022). Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and age. Tree Physiology, 42(8), 1570–1586. https://doi.org/10.1093/treephys/tpac019KivimäenpääM.RiikonenJ.ValolahtiH.ElinaH.HolopainenJ. K.HolopainenT.2022Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and ageTree Physiology42815701586https://doi.org/10.1093/treephys/tpac019Search in Google Scholar
Celedon, J. M., & Bohlmann, J. (2019). Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytologist, 224(4), 1444–1463. https://doi.org/10.1111/nph.15984CeledonJ. M.BohlmannJ.2019Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate changeNew Phytologist224414441463https://doi.org/10.1111/nph.15984Search in Google Scholar
Maison, A., Lugon, L., Park, S.-J., Baudic, A., Cantrell, C., Couvidat, F., … Sartelet, K. (2024). Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling. Atmospheric Chemistry and Physics, 24(10), 6011–6046. https://doi.org/10.5194/acp-24-6011-2024MaisonA.LugonL.ParkS.-J.BaudicA.CantrellC.CouvidatF.SarteletK.2024Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modelingAtmospheric Chemistry and Physics241060116046https://doi.org/10.5194/acp-24-6011-2024Search in Google Scholar
Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., & Butler, T. M. (2017). Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave. Environmental Science & Technology, 51(11), 6120–6130. https://doi.org/10.1021/acs.est.6b06514ChurkinaG.KuikF.BonnB.LauerA.GroteR.TomiakK.ButlerT. M.2017Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a HeatwaveEnvironmental Science & Technology511161206130https://doi.org/10.1021/acs.est.6b06514Search in Google Scholar
Gu, S., Guenther, A., & Faiola, C. (2021). Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Environmental Science & Technology, 55(18), 12191–12201. https://doi.org/10.1021/acs.est.1c01481GuS.GuentherA.FaiolaC.2021Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air QualityEnvironmental Science & Technology55181219112201https://doi.org/10.1021/acs.est.1c01481Search in Google Scholar
Ghirardo, A., Lindstein, F., Koch, K., Buegger, F., Schloter, M., Albert, A., … Rinnan, R. (2020). Origin of volatile organic compound emissions from subarctic tundra under global warming. Global Change Biology, 26(3), 1908–1925. https://doi.org/10.1111/gcb.14935GhirardoA.LindsteinF.KochK.BueggerF.SchloterM.AlbertA.RinnanR.2020Origin of volatile organic compound emissions from subarctic tundra under global warmingGlobal Change Biology26319081925https://doi.org/10.1111/gcb.14935Search in Google Scholar
Thao, N., Yu, X., & Zhang, H. (2014, kwiecień 4). Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Epicuticular Waxes of Urban Forest Species in Summer and Fall in Beijing, China. SSRN Scholarly Paper, Rochester, NY: Social Science Research Network. Pobrano z https://papers.ssrn.com/abstract=2573647ThaoN.YuX.ZhangH.2014kwiecień4Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Epicuticular Waxes of Urban Forest Species in Summer and Fall in Beijing, ChinaSSRN Scholarly Paper,Rochester, NYSocial Science Research NetworkPobrano z https://papers.ssrn.com/abstract=2573647Search in Google Scholar
Gao, G., Sun, F., Thanh Thao, N. T., Lun, X., & Yu, X. (2015). Different Concentrations of TSP, PM10, PM2.5, and PM1 of Several Urban Forest Types in Different Seasons. Polish Journal of Environmental Studies, 24(6), 2387–2395. https://doi.org/10.15244/pjoes/59501GaoG.SunF.Thanh ThaoN. T.LunX.YuX.2015Different Concentrations of TSP, PM10, PM2.5, and PM1 of Several Urban Forest Types in Different SeasonsPolish Journal of Environmental Studies24623872395https://doi.org/10.15244/pjoes/59501Search in Google Scholar
Yang, C., Geng, Y., Fu, X. Z., Coulter, J. A., & Chai, Q. (2020). The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy, 10(5), 732. https://doi.org/10.3390/agronomy10050732YangC.GengY.FuX. Z.CoulterJ. A.ChaiQ.2020The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid RegionAgronomy105732https://doi.org/10.3390/agronomy10050732Search in Google Scholar
Yang, Y., Luo, Z., Wei, Z., Zhao, J., Lu, T., Fu, T., & Tang, S. (2024). Combined use of chemical dust suppressant and herbaceous plants for tailings dust control. Environmental Geochemistry and Health, 46(9), 329. https://doi.org/10.1007/s10653-024-02119-8YangY.LuoZ.WeiZ.ZhaoJ.LuT.FuT.TangS.2024Combined use of chemical dust suppressant and herbaceous plants for tailings dust controlEnvironmental Geochemistry and Health469329https://doi.org/10.1007/s10653-024-02119-8Search in Google Scholar
Janhäll, S. (2015). Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmospheric Environment, 105, 130–137. https://doi.org/10.1016/j.atmosenv.2015.01.052JanhällS.2015Review on urban vegetation and particle air pollution – Deposition and dispersionAtmospheric Environment105130137https://doi.org/10.1016/j.atmosenv.2015.01.052Search in Google Scholar
Kabisch, N., Strohbach, M., Haase, D., & Kronenberg, J. (2016). Urban green space availability in European cities. Ecological Indicators, 70, 586–596. https://doi.org/10.1016/j.ecolind.2016.02.029KabischN.StrohbachM.HaaseD.KronenbergJ.2016Urban green space availability in European citiesEcological Indicators70586596https://doi.org/10.1016/j.ecolind.2016.02.029Search in Google Scholar