This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
E. Dugarova and N. Gülasan. (2017). Challenges and Opportunities in the Implementation of the Sustainable Development Goals 2 Lead Authors. [Online]. Available: www.unrisd.org
DugarovaE.GülasanN.. (2017). Challenges and Opportunities in the Implementation of the Sustainable Development Goals 2 Lead Authors. [Online]. Available: www.unrisd.org
C. A. Powell and B. D. Morreale. (2008). Materials Challenges in Advanced Coal Conversion Technologies.PowellC. A.MorrealeB. D.. (2008). Materials Challenges in Advanced Coal Conversion Technologies.Search in Google Scholar
M. A. Dmitrienko, G. S. Nyashina, and P. A. Strizhak (2017). Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals, J Hazard Mater, 338, 148–159, doi: 10.1016/j.jhazmat.2017.05.031.DmitrienkoM. A.NyashinaG. S.StrizhakP. A. (2017). Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals, J Hazard Mater, 338, 148–159, doi: 10.1016/j.jhazmat.2017.05.031.Open DOISearch in Google Scholar
Z. Zakaria, M. A. Mohd Ishak, M. F. Abdullah, and K. Ismail, (2010). Thermal Decomposition Study of Coals, Rice Husk, Rice Husk Char and Their Blends During Pyrolysis and Combustion via Thermogravimetric Analysis, International Journal of Chemical Technology, 2(3), 78–87. doi: 10.3923/ijct.2010.78.87.ZakariaZ.Mohd IshakM. A.AbdullahM. F.IsmailK. (2010). Thermal Decomposition Study of Coals, Rice Husk, Rice Husk Char and Their Blends During Pyrolysis and Combustion via Thermogravimetric Analysis, International Journal of Chemical Technology, 2(3), 78–87. doi: 10.3923/ijct.2010.78.87.Open DOISearch in Google Scholar
C. Wang, F. Wang, Q. Yang, and R. Liang (2009). Thermogravimetric studies of the behavior of wheat straw with added coal during combustion, Biomass Bioenergy, 33(1), 50–56. doi: 10.1016/j.biombioe.2008.04.013.WangC.WangF.YangQ.LiangR. (2009). Thermogravimetric studies of the behavior of wheat straw with added coal during combustion, Biomass Bioenergy, 33(1), 50–56. doi: 10.1016/j.biombioe.2008.04.013.Open DOISearch in Google Scholar
M. Tauseef et al., (2022). Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production, Fuel, 318(1). doi: 10.1016/j.fuel.2022.123685.TauseefM. (2022). Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production, Fuel, 318(1). doi: 10.1016/j.fuel.2022.123685.Open DOISearch in Google Scholar
U. Aslam, N. Ramzan, T. Iqbal, M. Kazmi, and A. Ikhlaq, (2016). Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk. Polish Journal of Chemical Technology, 18(3), 117–121. doi: 10.1515/pjct-2016-0057.AslamU.RamzanN.IqbalT.KazmiM.IkhlaqA. (2016). Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk. Polish Journal of Chemical Technology, 18(3), 117–121. doi: 10.1515/pjct-2016-0057.Open DOISearch in Google Scholar
L. Ludueña, D. Fasce, V. A. Alvarez, and P. M. Stefani, (2011). Nanocellulose from rice husk.LudueñaL.FasceD.AlvarezV. A.StefaniP. M. (2011). Nanocellulose from rice husk.Search in Google Scholar
S. M. L. Rosa, N. Rehman, M. I. G. De Miranda, S. M. B. Nachtigall, and C. I. D. Bica, (2012). Chlorinefree extraction of cellulose from rice husk and whisker isolation, Carbohydr Polym, 87(2), 1131–1138. doi: 10.1016/j.carbpol.2011.08.084.RosaS. M. L.RehmanN.De MirandaM. I. G.NachtigallS. M. B.BicaC. I. D. (2012). Chlorinefree extraction of cellulose from rice husk and whisker isolation, Carbohydr Polym, 87(2), 1131–1138. doi: 10.1016/j.carbpol.2011.08.084.Open DOISearch in Google Scholar
H. B. Vuthaluru, (2004). Thermal behaviour of coal/biomass blends during co-pyrolysis, Fuel Processing Technology, 85(2–3), 141–155. doi: 10.1016/S0378-3820(03)00112-7.VuthaluruH. B. (2004). Thermal behaviour of coal/biomass blends during co-pyrolysis, Fuel Processing Technology, 85(2–3), 141–155. doi: 10.1016/S0378-3820(03)00112-7.Open DOISearch in Google Scholar
K. Jayaraman, MV. Kok, I. Gokalp. (2017). Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of blends. Renewable energy, 101, 293–300. doi: 10.1016/j.renene.2016.08.072JayaramanK.KokMV.GokalpI.. (2017). Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of blends. Renewable energy, 101, 293–300. doi: 10.1016/j.renene.2016.08.072Open DOISearch in Google Scholar
K. Jayaraman and I. Gökalp, (2015). Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge, Energy Convers Manag, 89, 83–91. doi: 10.1016/j.enconman.2014.09.058.JayaramanK.GökalpI. (2015). Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge, Energy Convers Manag, 89, 83–91. doi: 10.1016/j.enconman.2014.09.058.Open DOISearch in Google Scholar
H. E. Kissinger, (1956). Reaction Kinetics in Differential Thermal Analysis. [Online]. Available: https://pubs.acs.org/sharingguidelinesKissingerH. E. (1956). Reaction Kinetics in Differential Thermal Analysis. [Online]. Available: https://pubs.acs.org/sharingguidelinesSearch in Google Scholar
C. D. Doyle, (1961). Kinetic analysis of thermogravimetric data, J Appl Polym Sci, 5(15), 285–292. doi: 10.1002/app.1961.070051506.DoyleC. D. (1961). Kinetic analysis of thermogravimetric data, J Appl Polym Sci, 5(15), 285–292. doi: 10.1002/app.1961.070051506.Open DOISearch in Google Scholar
Y. F. Huang, W. H. Kuan, P. T. Chiueh, and S. L. Lo, (2011). A sequential method to analyze the kinetics of biomass pyrolysis, Bioresour Technol, 102(19), 9241–9246. doi: 10.1016/j.biortech.2011.07.015.HuangY. F.KuanW. H.ChiuehP. T.LoS. L. (2011). A sequential method to analyze the kinetics of biomass pyrolysis, Bioresour Technol, 102(19), 9241–9246. doi: 10.1016/j.biortech.2011.07.015.Open DOISearch in Google Scholar
S. Ceylan and Y. Topçu, (2014). Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis, Bioresour Technol, 156, 182–188. doi: 10.1016/j.biortech.2014.01.040.CeylanS.TopçuY. (2014). Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis, Bioresour Technol, 156, 182–188. doi: 10.1016/j.biortech.2014.01.040.Open DOISearch in Google Scholar
A. K. Burnham, (1999). Global kinetic analysis of complex materials, Energy and Fuels, 13(1), 1–22. doi: 10.1021/ef9800765.BurnhamA. K. (1999). Global kinetic analysis of complex materials, Energy and Fuels, 13(1), 1–22. doi: 10.1021/ef9800765.Open DOISearch in Google Scholar
A. Ortega, (2008). A simple and precise linear integral method for isoconversional data, Thermochimica Acta, 474(1-2), 81–86. doi: 10.1016/j.tca.2008.05.003OrtegaA. (2008). A simple and precise linear integral method for isoconversional data, Thermochimica Acta, 474(1-2), 81–86. doi: 10.1016/j.tca.2008.05.003Open DOISearch in Google Scholar
A. Demirbas, (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues, J Anal Appl Pyrolysis, 72(2), 243–248, doi: 10.1016/j.jaap.2004.07.003.DemirbasA. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues, J Anal Appl Pyrolysis, 72(2), 243–248, doi: 10.1016/j.jaap.2004.07.003.Open DOISearch in Google Scholar
D. Kazawadi, G. R. John, and C. K. King’ondu, (2014). Experimental Investigation of Thermal Characteristics of Kiwira Coal Waste with Rice Husk Blends for Gasification, Journal of Energy, 2014, 1–8, doi: 10.1155/2014/562382.KazawadiD.JohnG. R.King’onduC. K. (2014). Experimental Investigation of Thermal Characteristics of Kiwira Coal Waste with Rice Husk Blends for Gasification, Journal of Energy, 2014, 1–8, doi: 10.1155/2014/562382.Open DOISearch in Google Scholar
D. K. W. Gan et al., (2018). Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts, Bioresour Technol, 265, 180–190. doi: 10.1016/j.biortech.2018.06.003.GanD. K. W. (2018). Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts, Bioresour Technol, 265, 180–190. doi: 10.1016/j.biortech.2018.06.003.Open DOISearch in Google Scholar
M. Asadieraghi and W. M. A. Wan Daud, (2015). Insitu catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multizone fixed bed reactor, Energy Convers Manag, 101, 151–163. doi: 10.1016/j.enconman.2015.05.008.AsadieraghiM.Wan DaudW. M. A. (2015). Insitu catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multizone fixed bed reactor, Energy Convers Manag, 101, 151–163. doi: 10.1016/j.enconman.2015.05.008.Open DOISearch in Google Scholar
M. Brebu and C. Vasile, (2010). Thermal degradation of lignin-a review.BrebuM.VasileC. (2010). Thermal degradation of lignin-a review.Search in Google Scholar
J. Zhang, T. Chen, J. Wu, and J. Wu, (2014). Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere, Bioresour Technol, 166, 87–95. doi: 10.1016/j.biortech.2014.05.030.ZhangJ.ChenT.WuJ.WuJ. (2014). Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere, Bioresour Technol, 166, 87–95. doi: 10.1016/j.biortech.2014.05.030.Open DOISearch in Google Scholar
A. Bhagavatula, G. Huffman, N. Shah, and R. Honaker, (2014). Evaluation of Thermal Evolution Profiles and Estimation of Kinetic Parameters for Pyrolysis of Coal/Corn Stover Blends Using Thermogravimetric Analysis, Journal of Fuels, 1–12, doi: 10.1155/2014/914856.BhagavatulaA.HuffmanG.ShahN.HonakerR. (2014). Evaluation of Thermal Evolution Profiles and Estimation of Kinetic Parameters for Pyrolysis of Coal/Corn Stover Blends Using Thermogravimetric Analysis, Journal of Fuels, 1–12, doi: 10.1155/2014/914856.Open DOISearch in Google Scholar