This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
CENELEC. Standard EN 50341-1:2005 Overhead electrical lines exceeding AC 45 kV Part 1: General requirements-Common specifications.CENELEC. Standard EN 50341-1:2005 Overhead electrical lines exceeding AC 45 kV Part 1: General requirements-Common specifications.Search in Google Scholar
CENELEC. Standard EN 50341-1:2012 Overhead electrical lines exceeding AC 1 kV Part 1: General requirements-Common specifications.CENELEC. Standard EN 50341-1:2012 Overhead electrical lines exceeding AC 1 kV Part 1: General requirements-Common specifications.Search in Google Scholar
PN-EN 50341-3-22:2010 Overhead electrical lines exceeding AC 45 kV. Part 2: Set of National Normative Aspects (NNA) for Poland, PKN 2010.PN-EN 50341-3-22:2010 Overhead electrical lines exceeding AC 45 kV. Part 2: Set of National Normative Aspects (NNA) for Poland, PKN 2010.Search in Google Scholar
PN-EN 50341-2-22:2016 Overhead electrical lines exceeding AC 1 kV. Part 2: Set of National Normative Aspects (NNA) for Poland, PKN 2016.PN-EN 50341-2-22:2016 Overhead electrical lines exceeding AC 1 kV. Part 2: Set of National Normative Aspects (NNA) for Poland, PKN 2016.Search in Google Scholar
Wandzik G. (2015). Design of power lines in Europe seen through the prism of national normative annexes to the EN 50341 standard. VI Scientific-technical Conference: Overhead Power Lines, Wisła 2015 (in Polish).WandzikG. (2015). Design of power lines in Europe seen through the prism of national normative annexes to the EN 50341 standard. VI Scientific-technical Conference: Overhead Power Lines, Wisła 2015 (in Polish).Search in Google Scholar
Kapłański G., Kowalczyk G., Szojda L., Wandzik G., Włodarczyk K. (2022). Universal Modular Support Structures (UMKW) as an Alternative for Power Transmission in Emergency Situations. 30 Conference on Structural Failures, Międzyzdroje 2022 (in Polish).KapłańskiG.KowalczykG.SzojdaL.WandzikG.WłodarczykK. (2022). Universal Modular Support Structures (UMKW) as an Alternative for Power Transmission in Emergency Situations. 30 Conference on Structural Failures, Międzyzdroje 2022 (in Polish).Search in Google Scholar
Wandzik G.: UMKW – Line (2023). Computer software for the analysis of conductors and loads on overhead line support structures According to the PN-EN 50341, Gliwice, 2020-2023.WandzikG.UMKW – Line (2023). Computer software for the analysis of conductors and loads on overhead line support structures According to the PN-EN 50341, Gliwice, 2020-2023.Search in Google Scholar
Bakeer T. (2022). The theory of homogeneity of nonlinear structural systems. A general basis for structural safety assessment. https://arXiv: 2212.01423.BakeerT. (2022). The theory of homogeneity of nonlinear structural systems. A general basis for structural safety assessment. https://arXiv:2212.01423.Search in Google Scholar
CEN, Standard EN 1990:2010 (Eurocode 0) : Basis of structural design. Brussels, 2010.CEN, Standard EN 1990:2010 (Eurocode 0) : Basis of structural design. Brussels, 2010.Search in Google Scholar
Gulvanessian H., Calgaro J.-A., Holicky M. (2012). Designers’ Guide to Eurocode EN 1990: Basis of structural design. ICE Publishing; 2nd edition, Thomas Telford Limited, London 2012.GulvanessianH.CalgaroJ.-A., HolickyM. (2012). Designers’ Guide to Eurocode EN 1990: Basis of structural design. ICE Publishing; 2nd edition, Thomas Telford Limited, London2012.Search in Google Scholar
Ditlevsen O., Madsen H.O. (2007). Structural Reliability Methods Department of Mechanical Engineering, Technical University of Denmark, Copenhagen, Internet Edition 2.3.7.DitlevsenO.MadsenH.O. (2007). Structural Reliability Methods Department of Mechanical Engineering, Technical University of Denmark, Copenhagen, Internet Edition 2.3.7.Search in Google Scholar
Eibl J. (1996). Nonlinear design and an appropriate safety format. IABSE Rep., vol. 74, Delft: International Association for Bridge and Structural Engineering; 1996. https://doi.org/10.5169/SEALS-56066.EiblJ. (1996). Nonlinear design and an appropriate safety format. IABSE Rep., vol. 74, Delft: International Association for Bridge and Structural Engineering; 1996. https://doi.org/10.5169/SEALS-56066.Search in Google Scholar
Castaldo P., Gino D., Mancini G. (2019). Safety formats for non-linear finite element analysis of reinforced concrete structures: discussion, comparison and proposals. Eng Struct; 193, 136–53. https://doi.org/10.1016/j.engstruct.2019.05.029.CastaldoP.GinoD.ManciniG. (2019). Safety formats for non-linear finite element analysis of reinforced concrete structures: discussion, comparison and proposals. Eng Structy; 193, 136–53. https://doi.org/10.1016/j.engstruct.2019.05.029.Search in Google Scholar
Teichgräber M., Fußeder M., b, Bletzinger K.-U., Straub D. (2023). Non-linear structural models and the partial safety factor concept. Structural Safety (103). https://doi.org/10.1016/j.strusafe.2023.102341.TeichgräberM.FußederM.BletzingerK.-U.StraubD. (2023). Non-linear structural models and the partial safety factor concept. Structural Safety (103). https://doi.org/10.1016/j.strusafe.2023.102341.Search in Google Scholar
Fusseder M, Teichgräber M, Bletzinger K, Straub D, Goldbach A (2021). Investigations on the design of membrane structures with the semi-probabilistic safety concept. 10th Ed. Conf. Text. Compos. Inflatable Struct., CIMNE; 2021. https://doi.org/10.23967/membranes.2021.011.FussederMTeichgräberMBletzingerKStraubDGoldbachA (2021). Investigations on the design of membrane structures with the semi-probabilistic safety concept. 10th Ed. Conf. Text. Compos. Inflatable Struct., CIMNE; 2021. https://doi.org/10.23967/membranes.2021.011.Search in Google Scholar
Uhlemann J., Stimpfle B., Stranghöner N (2014). Application of the semiprobabilistic safety concept of EN 1990 in the design of prestressed membrane structures. In: Proceedings of the EUROSTEEL. 2014.UhlemannJ.StimpfleB.StranghönerN (2014). Application of the semiprobabilistic safety concept of EN 1990 in the design of prestressed membrane structures. In: Proceedings of the EUROSTEEL. 2014.Search in Google Scholar
Stranghöner N, Uhlemann J, Bilginoglu F, Bletzinger K-U, Bögner-Balz H, Gerhold S, et al. (2016). Guideline for a European Structural Design of Tensile Membrane Structures Made from Fabrics and Foils-. Background documents in support to the implementation, harmonization and further development of the Eurocodes.StranghönerNUhlemannJBilginogluFBletzingerK-UBögner-BalzHGerholdS (2016). Guideline for a European Structural Design of Tensile Membrane Structures Made from Fabrics and Foils-. Background documents in support to the implementation, harmonization and further development of the Eurocodes.Search in Google Scholar
Cigre Technical Brochure No 324 (B2.12.3): SagTension Calculation Methods for Overhead Lines. Cigre, June 2007.Cigre Technical Brochure No 324 (B2.12.3): SagTension Calculation Methods for Overhead Lines. Cigre, June2007.Search in Google Scholar
CEN, Standard EN 1993-3-1:2008, Eurocode 3: Design of Steel Structures. Part 3.1: Towers, Masts and Chimneys, Brussels, 2008.CEN, Standard EN 1993-3-1:2008, Eurocode 3: Design of Steel Structures. Part 3.1: Towers, Masts and Chimneys, Brussels, 2008.Search in Google Scholar
Mendera Z., Szojda L., Wandzik G. (2012). Steel Support Structures for Overhead Power Lines. Wydawnictwo Naukowe PWN SA, Warszawa (in Polish).MenderaZ.SzojdaL.WandzikG. (2012). Steel Support Structures for Overhead Power Lines. Wydawnictwo Naukowe PWN SA, Warszawa (in Polish).Search in Google Scholar
Mendera Z., Szojda L., Wandzik G. (2017). Design of Steel Towers for Overhead Power Lines in the Context of European Standards. Wydawnictwo Naukowe PWN SA, Warszawa (in Polish).MenderaZ.SzojdaL.WandzikG. (2017). Design of Steel Towers for Overhead Power Lines in the Context of European Standards. Wydawnictwo Naukowe PWN SA, Warszawa (in Polish).Search in Google Scholar