This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Bian Z.F., Miao X.X., Lei S.G. (2012). The challenges of reusing mining and mineral-process in wastes. Science, 337(6095), 702–703.BianZ.F.MiaoX.X.LeiS.G. (2012). The challenges of reusing mining and mineral-process in wastes. Science, 337(6095), 702–703.Search in Google Scholar
Chudek M. (2010). Mechanika górotworu z pod stawami zarządzania ochroną środowiska w obszarach górniczych i pogórniczych (Rock mass mechanics with the basics of environmental protection management in mining and post-mining areas). Wydawnictwo Politechniki Śląskiej.ChudekM. (2010). Mechanika górotworu z pod stawami zarządzania ochroną środowiska w obszarach górniczych i pogórniczych (Rock mass mechanics with the basics of environmental protection management in mining and post-mining areas). Wydawnictwo Politechniki Śląskiej.Search in Google Scholar
Deck O., Al Heib M., Homand F. (2003). Taking the soil–structure interaction into account in assessing the loading of a structure in a mining subsidence area. Engineering Structures, 25(4), 435–448. Retrieved from https://doi.org/10.1016/S0141-0296(02)00184-0.DeckO.Al HeibM.HomandF. (2003). Taking the soil–structure interaction into account in assessing the loading of a structure in a mining subsidence area. Engineering Structures, 25(4), 435–448. Retrieved from https://doi.org/10.1016/S0141-0296(02)00184-0.Search in Google Scholar
Eugênio T.M.C., Fagundes J.F., Viana Q.S., Vilela A.P., Mendes R.F. (2021). Study on the feasibility of using iron ore tailing (iot) on technological properties of concrete roof tiles. Construction and Building Materials, 279, 1–19. Retrieved from https://doi.org/10.1016Zj.conbuildmat.2021.122484.EugênioT.M.C.FagundesJ.F.VianaQ.S.VilelaA.P.MendesR.F. (2021). Study on the feasibility of using iron ore tailing (iot) on technological properties of concrete roof tiles. Construction and Building Materials, 279, 1–19. Retrieved from https://doi.org/10.1016Zj.conbuildmat.2021.122484.Search in Google Scholar
Florkowska L. (2013). Example building damage caused by mining exploitation in disturbed rock mass. Studia Geotechnica et Mechanica, 35(2), 19–38.FlorkowskaL. (2013). Example building damage caused by mining exploitation in disturbed rock mass. Studia Geotechnica et Mechanica, 35(2), 19–38.Search in Google Scholar
Instrukcja GIG 12/2000. (2000). Zasady oceny możliwości prowadzenia podziemnej eksploatacji górniczej z uwagi na ochronę obiektów budowlanych (Principles of assessing the possibility of conducting underground mining due to the protection of buildings). Wydawnictwo Głównego Instytutu Górnictwa.Instrukcja GIG 12/2000. (2000). Zasady oceny możliwości prowadzenia podziemnej eksploatacji górniczej z uwagi na ochronę obiektów budowlanych (Principles of assessing the possibility of conducting underground mining due to the protection of buildings). Wydawnictwo Głównego Instytutu Górnictwa.Search in Google Scholar
Instrukcja ITB nr 416/2006. (2006). Projektowanie budynków na terenach górniczych (Designing buildings in mining areas). Wydawnictwo ITB.Instrukcja ITB nr 416/2006. (2006). Projektowanie budynków na terenach górniczych (Designing buildings in mining areas). Wydawnictwo ITB.Search in Google Scholar
Kapusta Ł., Szojda L. (2021). The role of expansion joints for traditional buildings affected by the curvature of the mining area. Engineering Failure Analysis, 128, 1–25. Retrieved from https://doi.org/10.1016/j.engfailanal.2021.105598.KapustaŁ.SzojdaL. (2021). The role of expansion joints for traditional buildings affected by the curvature of the mining area. Engineering Failure Analysis, 128, 1–25. Retrieved from https://doi.org/10.1016/j.engfailanal.2021.105598.Search in Google Scholar
Karácsonyi B. (1979). Guiding principles for the preparation of hydrological maps for building. Bulletin of the International Association of Engineering Geology, 19, 237–241. Retrieved from https://doi.org/10.1007/BF02600481.KarácsonyiB. (1979). Guiding principles for the preparation of hydrological maps for building. Bulletin of the International Association of Engineering Geology, 19, 237–241. Retrieved from https://doi.org/10.1007/BF02600481.Search in Google Scholar
Knothe S. (1984). Prognozowanie wpływów eksploatacji górniczej (Forecasting the influences of mining exploitation). Wydawnictwo Naukowe “Śląsk”.KnotheS. (1984). Prognozowanie wpływów eksploatacji górniczej (Forecasting the influences of mining exploitation). Wydawnictwo Naukowe “Śląsk”.Search in Google Scholar
Kratzsch H. (1983). Mining Subsidence Engineering. Springer-Verlag.KratzschH. (1983). Mining Subsidence Engineering. Springer-Verlag.Search in Google Scholar
Kwiatek J. (2002). Obiekty budowlane na terenach górniczych (Building structures in mining areas). Wydawnictwo Głównego Instytutu Górnictwa.KwiatekJ. (2002). Obiekty budowlane na terenach górniczych (Building structures in mining areas). Wydawnictwo Głównego Instytutu Górnictwa.Search in Google Scholar
Kwiatek J. et al. (1997). Ochrona obiektów budowlanych na terenach górniczych (Protection of buildings in mining areas). Wydawnictwo Głównego Instytutu Górnictwa.KwiatekJ. (1997). Ochrona obiektów budowlanych na terenach górniczych (Protection of buildings in mining areas). Wydawnictwo Głównego Instytutu Górnictwa.Search in Google Scholar
Marescotti P., Azzali E., Servida D. (2010). Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environmental Earth Sciences, 61, 187–199. Retrieved from https://doi.org/10.1007/s12665-009-0335-7.MarescottiP.AzzaliE.ServidaD. (2010). Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environmental Earth Sciences, 61, 187–199. Retrieved from https://doi.org/10.1007/s12665-009-0335-7.Search in Google Scholar
Mutke G. i inni (2018). Zasady stosowania Górniczej Skali Intensywności Sejsmicznej GSIS-2017 do prognozy i oceny skutków oddziaływania wstrząsów indukowanych eksploatacją na obiekty budowlane oraz klasyfikacji ich odporności dynamicznej (Principles of applying the Mining Seismic Intensity Scale GSIS-2017 to the forecast and assessment of the effects of shocks induced by exploitation on building structures and the classification of their dynamic resistance). Prace Naukowe GIG, Górnictwo i Środowisko, 64.MutkeG. i inni (2018). Zasady stosowania Górniczej Skali Intensywności Sejsmicznej GSIS-2017 do prognozy i oceny skutków oddziaływania wstrząsów indukowanych eksploatacją na obiekty budowlane oraz klasyfikacji ich odporności dynamicznej (Principles of applying the Mining Seismic Intensity Scale GSIS-2017 to the forecast and assessment of the effects of shocks induced by exploitation on building structures and the classification of their dynamic resistance). Prace Naukowe GIG, Górnictwo i Środowisko, 64.Search in Google Scholar
Orwat J. (2020). Mining exploitation forecasted effects caused by a hard coal extraction from a thick seam. Journal of Physics: Conference Series, 1426(1), 1–8.OrwatJ. (2020). Mining exploitation forecasted effects caused by a hard coal extraction from a thick seam. Journal of Physics: Conference Series, 1426(1), 1–8.Search in Google Scholar
Orwat J., Gromysz K. (2021). Occurrence consequences of mining terrain surface discontinuous linear deformations in a residential building. Journal of Physics: Conference Series, 1781 (1), 1–11.OrwatJ.GromyszK. (2021). Occurrence consequences of mining terrain surface discontinuous linear deformations in a residential building. Journal of Physics: Conference Series, 1781 (1), 1–11.Search in Google Scholar
Quanyuan W., Jiewu P., Shanzhong Q., Yiping L., Congcong H., Tingxiang L., Lime H. (2009). Impacts of coal mining subsidence on the surface landscape in Longkou City, Shandong Province of China. Environmental Earth Sciences, 59, 783–791.QuanyuanW.JiewuP.ShanzhongQ.YipingL.CongcongH.TingxiangL.LimeH. (2009). Impacts of coal mining subsidence on the surface landscape in Longkou City, Shandong Province of China. Environmental Earth Sciences, 59, 783–791.Search in Google Scholar
Rozporządzenie Ministra Środowiska z dnia 8 grudnia 2017 r. w sprawie planów ruchów zakładów górniczych (Regulation of the Minister of the Environment of December 8, 2017 on mining plant operations plans). Dziennik Ustaw z 2017 poz. 2293.Rozporządzenie Ministra Środowiska z dnia 8 grudnia2017r. w sprawie planów ruchów zakładów górniczych (Regulation of the Minister of the Environment of December 8, 2017 on mining plant operations plans). Dziennik Ustaw z 2017 poz. 2293.Search in Google Scholar
Saeidi A., Deck O., Verdel T. (2009). Development of building vulnerability functions in subsidence regions from empirical methods. Engineering Structures, 31 (10), 2275–2286. Retrieved from https://doi.org/10.1016/j.engstruct.2009.04.010.SaeidiA.DeckO.VerdelT. (2009). Development of building vulnerability functions in subsidence regions from empirical methods. Engineering Structures, 31 (10), 2275–2286. Retrieved from https://doi.org/10.1016Zj.engstruct.2009.04.010.Search in Google Scholar
Słowik L. (2015). Wpływ nachylenia terenu spowodowanego podziemną eksploatacją górniczą na wychylenie obiektów budowlanych (The influence of the slope of the terrain caused by underground mining on the inclination of buildings) (PhD thesis, Building Research Institute), Poland, Warszawa.SłowikL. (2015). Wpływ nachylenia terenu spowodowanego podziemną eksploatacją górniczą na wychylenie obiektów budowlanych (The influence of the slope of the terrain caused by underground mining on the inclination of buildings) (PhD thesis, Building Research Institute), Poland, Warszawa.Search in Google Scholar
Stockmann M., Hirsch D., Lippmann-Pipke J. (2013). Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany. Environmental Earth Sciences, 68, 1153–1168. Retrieved from https://doi.org/10.1007/s12665-012-1817-6.StockmannM.HirschD.Lippmann-PipkeJ. (2013). Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany. Environmental Earth Sciences, 68, 1153–1168. Retrieved from https://doi.org/10.1007/s12665-012-1817-6.Search in Google Scholar
Strzałkowski P. (2019). Some remarks on impact of mining based on an example of building deformation and damage caused by mining in conditions of Upper Silesian Coal Basin. Pure and Applied Geophysics, 176(6), 2595–2605.StrzałkowskiP. (2019). Some remarks on impact of mining based on an example of building deformation and damage caused by mining in conditions of Upper Silesian Coal Basin. Pure and Applied Geophysics, 176(6), 2595–2605.Search in Google Scholar
Strzałkowski P. (2015). Zarys ochrony terenów górniczych (Outline of the protection of mining areas). Wydawnictwo Politechniki Śląskiej.StrzałkowskiP. (2015). Zarys ochrony terenów górniczych (Outline of the protection of mining areas). Wydawnictwo Politechniki Śląskiej.Search in Google Scholar
Szojda L., Kapusta Ł. (2021). Numerical analysis of the influence of mining ground deformation on the structure of a masonry residential building. Archives of Civil Engineering, 67(3), 243–257.SzojdaL.KapustaŁ. (2021). Numerical analysis of the influence of mining ground deformation on the structure of a masonry residential building. Archives of Civil Engineering, 67(3), 243–257.Search in Google Scholar
Szojda L., Wandzik G. (2019). Discontinuous terrain deformation – forecasting and consequences of their occurrence for building structures. 29th International Conference on Structural Failures. ICSF 2019, 1–12. Retrieved from https://doi.org/10.1051/matecconf/201928403010.SzojdaL.WandzikG. (2019). Discontinuous terrain deformation – forecasting and consequences of their occurrence for building structures. 29th International Conference on Structural Failures. ICSF 2019, 1–12. Retrieved from https://doi.org/10.1051/matecconf/201928403010.Search in Google Scholar
Ścigała R. (2008). Komputerowe wspomaganie prognozowania deformacji górotworu i powierzchni wywołanych podziemną eksploatacją górniczą (Computer aided forecasting of rock mass and surface deformations caused by underground mining). Wydawnictwo Politechniki Śląskiej.ŚcigałaR. (2008). Komputerowe wspomaganie prognozowania deformacji górotworu i powierzchni wywołanych podziemną eksploatacją górniczą (Computer aided forecasting of rock mass and surface deformations caused by underground mining). Wydawnictwo Politechniki Śląskiej.Search in Google Scholar
Ustawa z dnia 9 czerwca 2011 r. Prawo geologiczne i górnicze (The Act of June 9, 2011 Geological and Mining Law). Dziennik Ustaw z 2011 nr 163 poz. 981 z późn. zm.Ustawa z dnia 9 czerwca2011r. Prawo geologiczne i górnicze (The Act of June 9, 2011 Geological and Mining Law). Dziennik Ustaw z 2011 nr 163 poz. 981 z późn. zm.Search in Google Scholar
Vandana M., John S.E., Maya K. (2020). Environmental impact of quarrying of building stones and laterite blocks: a comparative study of two river basins in Southern Western Ghats, India. Environmental Earth Sciences, 79 (14), 1–15. Retrieved from https://doi.org/10.1007/s12665-020-09104-1.VandanaM.JohnS.E.MayaK. (2020). Environmental impact of quarrying of building stones and laterite blocks: a comparative study of two river basins in Southern Western Ghats, India. Environmental Earth Sciences, 79 (14), 1–15. Retrieved from https://doi.org/10.1007/s12665-020-09104-1.Search in Google Scholar
Whittaker B.N., Reddish, D.J. (1989). Subsidence Occurrence, Prediction and Control. Developments in Geotechnical Engineering. Elsevier.WhittakerB.N.ReddishD.J. (1989). Subsidence Occurrence, Prediction and Control. Developments in Geotechnical Engineering. Elsevier.Search in Google Scholar
Zhu X., Guo G., Zha J., Chen T., Fang Q., Yang X. (2016). Surface dynamic subsidence prediction model of solid backfill mining. Environmental Earth Sciences, 75 (12), 1–9.ZhuX.GuoG.ZhaJ.ChenT.FangQ.YangX. (2016). Surface dynamic subsidence prediction model of solid backfill mining. Environmental Earth Sciences, 75 (12), 1–9.Search in Google Scholar