Open Access

Effect of Ureolytic Bacteria on Compressibility of the Soils with Variable Gradation


Cite

Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67. KrajewskaB. 2018 Urease-aided calcium carbonate mineralization for engineering applications: A review Journal of Advanced Research 13 59 67 Search in Google Scholar

Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and environmental microbiology, 69(8), 4901–4909. HammesF. BoonN. de VilliersJ. VerstraeteW. SicilianoS. D. 2003 Strain-specific ureolytic microbial calcium carbonate precipitation Applied and environmental microbiology 69 8 4901 4909 Search in Google Scholar

Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1–3), 9–21. KrajewskaB. 2009 Ureases I. Functional, catalytic and kinetic properties: A review Journal of Molecular Catalysis B: Enzymatic 59 1–3 9 21 Search in Google Scholar

Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review, Biofouling, 29(6), 715–733. PhillipsA. J. GerlachR. LauchnorE. MitchellA. C. CunninghamA. B. SpanglerL. 2013 Engineered applications of ureolytic biomineralization: a review Biofouling 29 6 715 733 Search in Google Scholar

Mujah, D., Shahin, M. A., & Cheng, L. (2016). State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, Geomicrobiology Journal, 34(6), 524–537. MujahD. ShahinM. A. ChengL. 2016 State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization Geomicrobiology Journal 34 6 524 537 Search in Google Scholar

Rajasekar, A., Wilkinson, S., & Moy, C. K. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environmental Science and Ecotechnology, 6, 100096. RajasekarA. WilkinsonS. MoyC. K. 2021 MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review Environmental Science and Ecotechnology 6 100096 Search in Google Scholar

Zha, F., Wang, H., Kang, B., Liu, C., Xu, L., & Tan, X. (2021). Improving the strength and leaching characteristics of Pb-contaminated silt through MICP. Crystals, 11(11), 1303. ZhaF. WangH. KangB. LiuC. XuL. TanX. 2021 Improving the strength and leaching characteristics of Pb-contaminated silt through MICP Crystals 11 11 1303 Search in Google Scholar

Li, X., Wang, Y., Tang, J., & Li, K. (2022). Removal behavior of heavy metals from aqueous solutions via microbially ınduced carbonate precipitation driven by acclimatized Sporosarcina pasteurii. Applied Sciences, 12(19), 9958. LiX. WangY. TangJ. LiK. 2022 Removal behavior of heavy metals from aqueous solutions via microbially ınduced carbonate precipitation driven by acclimatized Sporosarcina pasteurii Applied Sciences 12 19 9958 Search in Google Scholar

Dhami N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. DhamiN. K. ReddyM. S. MukherjeeA. 2013 Biomineralization of calcium carbonates and their engineered applications: A review Frontiers in Microbiology 4 314 Search in Google Scholar

Anbu, P., Kang, C., Shin, Y., & So, J. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26. AnbuP. KangC. ShinY. SoJ. 2016 Formations of calcium carbonate minerals by bacteria and its multiple applications SpringerPlus 5 1 1 26 Search in Google Scholar

Seifan, M., Samani, A. K., & Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100(6), 2591–2602. SeifanM. SamaniA. K. BerenjianA. 2016 Bioconcrete: next generation of self-healing concrete Applied microbiology and biotechnology 100 6 2591 2602 Search in Google Scholar

DeJong, J. T., Fritzges, M.B., & Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1381–1392. DeJongJ. T. FritzgesM.B. NüssleinK. 2006 Microbially Induced Cementation to Control Sand Response to Undrained Shear Journal of Geotechnical and Geoenvironmental Engineering 132 1381 1392 Search in Google Scholar

Cheng L., Cord-Ruwisch R., & Shahin M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81–90. ChengL. Cord-RuwischR. ShahinM. A. 2013 Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation Canadian Geotechnical Journal 50 1 81 90 Search in Google Scholar

Wang, Y., Soga, K., DeJong, J.T., & Kabla, A.J. (2021). Effects of bacterial density on growth rate and characteristics of Microbial-Induced CaCO3 precipitates: particle-scale experimental study. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021036. WangY. SogaK. DeJongJ.T. KablaA.J. 2021 Effects of bacterial density on growth rate and characteristics of Microbial-Induced CaCO3 precipitates: particle-scale experimental study Journal of Geotechnical and Geoenvironmental Engineering 147 6 04021036 Search in Google Scholar

De Muynck, W., De Belie, N., & Verstraete, W., (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136. De MuynckW. De BelieN. VerstraeteW. 2010 Microbial carbonate precipitation in construction materials: A review Ecological Engineering 36 2 118 136 Search in Google Scholar

Choi, S., Wang, K., Wen, Z., & Chu, J. (2017). Mortar crack repair using microbial induced calcite precipitation method. Cement and Concrete Composites, 83, 209–221. ChoiS. WangK. WenZ. ChuJ. 2017 Mortar crack repair using microbial induced calcite precipitation method Cement and Concrete Composites 83 209 221 Search in Google Scholar

Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus phaericus. Heliyon, 8(7), e09879. NasserA. A. SorourN. M. SaafanM. A. AbbasR. N. 2022 Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus phaericus Heliyon 8 7 e09879 Search in Google Scholar

Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571. Stocks-FischerS. GalinatJ. K. BangS. S. 1999 Microbiological precipitation of CaCO3 Soil Biology and Biochemistry 31 11 1563 1571 Search in Google Scholar

Erdmann, N., de Payrebrune, K. M., Ulber, R., & Strieth, D. (2022). Optimizing compressive strength of sand treated with MICP using response surface methodology. SN Applied Sciences, 4, 282. ErdmannN. de PayrebruneK. M. UlberR. StriethD. 2022 Optimizing compressive strength of sand treated with MICP using response surface methodology SN Applied Sciences 4 282 Search in Google Scholar

Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. WhiffinV. S. van PaassenL. A. HarkesM. P. 2007 Microbial carbonate precipitation as a soil improvement technique Geomicrobiology Journal 24 5 417 423 Search in Google Scholar

Ivanov, V., & Chu, J. (2008). Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Reviews in Environmental Science and Bio/Technology, 7, 139–153. IvanovV. ChuJ. 2008 Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ Reviews in Environmental Science and Bio/Technology 7 139 153 Search in Google Scholar

DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Biomediated soil improvement. Ecological Engineering, 36(2), 197–210. DeJongJ. T. MortensenB. M. MartinezB. C. NelsonD. C. 2010 Biomediated soil improvement Ecological Engineering 36 2 197 210 Search in Google Scholar

van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175. van PaassenL. A. DazaC. M. StaalM. SorokinD. Y. van der ZonW. van LoosdrechtM. C. M. 2010 Potential soil reinforcement by biological denitrification Ecological Engineering 36 2 168 175 Search in Google Scholar

Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112–117. HarkesM. P. van PaassenL. A. BoosterJ. L. WhiffinV. S. van LoosdrechtM. C. 2010 Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement Ecological Engineering 36 2 112 117 Search in Google Scholar

Jiang, N., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Geotechnique, 67, 42–55. JiangN. SogaK. 2017 The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures Geotechnique 67 42 55 Search in Google Scholar

Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique, 63(4), 331–339. Al QabanyA. SogaK. 2013 Effect of chemical treatment used in MICP on engineering properties of cemented soils Geotechnique 63 4 331 339 Search in Google Scholar

Cheng L., & Shahin M. A. (2016). Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385. ChengL. ShahinM. A. 2016 Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation Canadian Geotechnical Journal 53 9 1376 1385 Search in Google Scholar

Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49–55. RowshanbakhtK. KhamehchiyanM. SajediR. H. NikudelM. R. 2016 Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment Ecological Engineering 89 49 55 Search in Google Scholar

Ng W. S., Lee M. L., & Hii S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 6(2), 723–729. NgW. S. LeeM. L. HiiS. L. 2012 An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement World Academy of Science, Engineering and Technology 6 2 723 729 Search in Google Scholar

Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015057. FengK. MontoyaB. M. 2016 Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading Journal of Geotechnical and Geoenvironmental Engineering 142 1 04015057 Search in Google Scholar

Nemati, M., Greene, E., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925–933. NematiM. GreeneE. VoordouwG. 2005 Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option Process Biochemistry 40 2 925 933 Search in Google Scholar

Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587–598. MartinezB. C. DeJongJ. T. GinnT. R. MontoyaB. M. BarkoukiT. H. HuntC. TanyuB. MajorD. 2013 Experimental optimization of microbial-induced carbonate precipitation for soil improvement Journal of Geotechnical and Geoenvironmental Engineering 139 4 587 598 Search in Google Scholar

Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), 04014094. ZhaoQ. LiL. LiC. LiM. AminiF. ZhangH. 2014 Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease Journal of Materials in Civil Engineering 26 12 04014094 Search in Google Scholar

Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. Journal of Geotechnical and Geoenvironmental Engineering, 145(8), 04019033. MahawishA. BouazzaA. GatesW. P. 2019 Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels Journal of Geotechnical and Geoenvironmental Engineering 145 8 04019033 Search in Google Scholar

Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221. CanakciH. SidikW. Halil KilicI. 2015 Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil Soils and Foundations 55 5 1211 1221 Search in Google Scholar

Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E. (2015). Mechanical behaviour of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015066. LinH. SuleimanM. T. BrownD. G. KavazanjianE. 2015 Mechanical behaviour of sands treated by microbially induced carbonate precipitation Journal of Geotechnical and Geoenvironmental Engineering 142 2 04015066 Search in Google Scholar

Harran, R., Terzis, D., & Laloui, L. (2022). Characterizing the deformation evolution with stress and time of biocemented sands. Journal of Geotechnical and Geoenvironmental Engineering, 148(10), 04022074. HarranR. TerzisD. LalouiL. 2022 Characterizing the deformation evolution with stress and time of biocemented sands Journal of Geotechnical and Geoenvironmental Engineering 148 10 04022074 Search in Google Scholar

Montoya, B. M., DeJong, J., & Boulanger, R. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302–312. MontoyaB. M. DeJongJ. BoulangerR. 2013 Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation Geotechnique 63 4 302 312 Search in Google Scholar

Sharma, M., & Satyam, N. (2021). Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance. Geoderma, 402, 115359. SharmaM. SatyamN. 2021 Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance Geoderma 402 115359 Search in Google Scholar

Wasil, M. (2020). Effect of bentonite addition on the properties of fly ash as a material for landfill sealing layers. Applied Sciences, 10(4), 1488. WasilM. 2020 Effect of bentonite addition on the properties of fly ash as a material for landfill sealing layers Applied Sciences 10 4 1488 Search in Google Scholar

Zabielska-Adamska, K. (2020). Characteristics of compacted fly ash as a transitional soil. Materials, 13(6), 1387. Zabielska-AdamskaK. 2020 Characteristics of compacted fly ash as a transitional soil Materials 13 6 1387 Search in Google Scholar

Jiang, N., Tang, C., Yin, L., Xie, Y., & Shi, B. (2019). Applicability of Microbial Calcification Method for sandy-slope surface erosion control. Journal of Materials in Civil Engineering, 31(11), 04019250. JiangN. TangC. YinL. XieY. ShiB. 2019 Applicability of Microbial Calcification Method for sandy-slope surface erosion control Journal of Materials in Civil Engineering 31 11 04019250 Search in Google Scholar

Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233. MitchellJ. K. SantamarinaJ. C. 2005 Biological considerations in geotechnical engineering Journal of Geotechnical and Geoenvironmental Engineering 131 10 1222 1233 Search in Google Scholar

Martin, D., Dodds, K., Ngwenya, B. T., Butler, I. B., & Elphick, S. C. (2012). Inhibition of Sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis. Environmental Science & Technology, 46(15), 8351–8355. MartinD. DoddsK. NgwenyaB. T. ButlerI. B. ElphickS. C. 2012 Inhibition of Sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis Environmental Science & Technology 46 15 8351 8355 Search in Google Scholar

Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549. YasuharaH. NeupaneD. HayashiK. OkamuraM. 2012 Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation Soils and Foundations 52 3 539 549 Search in Google Scholar

Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of biotreated coarse sand specimens. Scientific Reports, 11(1), 6161. KonstantinouC. WangY. BiscontinG. SogaK. 2021 The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of biotreated coarse sand specimens Scientific Reports 11 1 6161 Search in Google Scholar

Zhao, Y., Xiao, Z., Lv, J., Shen, W., & Xu, R. (2019) A novel approach to enhance the urease activity of Sporosarcina pasteurii and its application on microbial-induced calcium carbonate precipitation for sand, Geomicrobiology Journal, 36(9), 819–825. ZhaoY. XiaoZ. LvJ. ShenW. XuR. 2019 A novel approach to enhance the urease activity of Sporosarcina pasteurii and its application on microbial-induced calcium carbonate precipitation for sand Geomicrobiology Journal 36 9 819 825 Search in Google Scholar

Zamani, A., & Montoya, B. M. (2017). Shearing and hydraulic behavior of MICP treated Silty Sand. Geotechnical Frontiers 2017, 290–299. ZamaniA. MontoyaB. M. 2017 Shearing and hydraulic behavior of MICP treated Silty Sand Geotechnical Frontiers 2017 290 299 Search in Google Scholar

Xu, H., Zheng, H., Wang, J., Ding, X., & Chen, P. (2019). Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. MethodsX, 6, 1036–1043. XuH. ZhengH. WangJ. DingX. ChenP. 2019 Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash MethodsX 6 1036 1043 Search in Google Scholar

Al Qabany, A., Soga, K. and Santamarina, C. (2012). Factors affecting efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001. Al QabanyA. SogaK. SantamarinaC. 2012 Factors affecting efficiency of Microbially Induced Calcite Precipitation Journal of Geotechnical and Geoenvironmental Engineering 138 8 992 1001 Search in Google Scholar

Wasil, M. (2022). Compressibility of fly ash and fly ash-bentonite mixtures. The Baltic Journal of Road and Bridge Engineering, 17(3), 21–43. WasilM. 2022 Compressibility of fly ash and fly ash-bentonite mixtures The Baltic Journal of Road and Bridge Engineering 17 3 21 43 Search in Google Scholar

Zabielska-Adamska, K. (2018). One-dimensional compression and swelling of compacted fly ash. Geotechnical Research, 5(2), 96–105 Zabielska-AdamskaK. 2018 One-dimensional compression and swelling of compacted fly ash Geotechnical Research 5 2 96 105 Search in Google Scholar

Cardoso, R., Pedreira, R., Duarte, S. O., & Monteiro, G. A. (2020). About calcium carbonate precipitation on sand biocementation. Engineering Geology, 271, 105612. CardosoR. PedreiraR. DuarteS. O. MonteiroG. A. 2020 About calcium carbonate precipitation on sand biocementation Engineering Geology 271 105612 Search in Google Scholar

eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings