Cite

Zeybek, Ö. (2022). The stability of anchored cylindrical steel tanks with a secondary stiffening ring. International Journal of Pressure Vessels and Piping, 198, 104661. ZeybekÖ. 2022 The stability of anchored cylindrical steel tanks with a secondary stiffening ring International Journal of Pressure Vessels and Piping 198 104661 Search in Google Scholar

Zeybek, Ö., & Özkılıç, Y. O. (2023). Effects of reinforcing steel tanks with intermediate ring stiffeners on wind buckling during construction. Journal of Constructional Steel Research, 203, 107832. ZeybekÖ. ÖzkılıçY. O. 2023 Effects of reinforcing steel tanks with intermediate ring stiffeners on wind buckling during construction Journal of Constructional Steel Research 203 107832 Search in Google Scholar

Chen, L., Rotter, J. M., & Doerich, C. (2011). Buckling of cylindrical shells with stepwise variable wall thickness under uniform external pressure. Engineering structures, 33(12), 3570–3578. ChenL. RotterJ. M. DoerichC. 2011 Buckling of cylindrical shells with stepwise variable wall thickness under uniform external pressure Engineering structures 33 12 3570 3578 Search in Google Scholar

Broggi, M. S. G. I., & Schuëller, G. I. (2011). Efficient modeling of imperfections for buckling analysis of composite cylindrical shells. Engineering Structures, 33(5), 1796–1806. BroggiM. S. G. I. SchuëllerG. I. 2011 Efficient modeling of imperfections for buckling analysis of composite cylindrical shells Engineering Structures 33 5 1796 1806 Search in Google Scholar

Ghazijahani, T. G., Jiao, H., & Holloway, D. (2014). Experimental study on damaged cylindrical shells under compression. Thin-Walled Structures, 80, 13–21. GhazijahaniT. G. JiaoH. HollowayD. 2014 Experimental study on damaged cylindrical shells under compression Thin-Walled Structures 80 13 21 Search in Google Scholar

Ghazijahani, T. G., Jiao, H., & Holloway, D. (2014). Experiments on dented cylindrical shells under peripheral pressure. Thin-Walled Structures, 84, 50–58. GhazijahaniT. G. JiaoH. HollowayD. 2014 Experiments on dented cylindrical shells under peripheral pressure Thin-Walled Structures 84 50 58 Search in Google Scholar

Gerasimidis, S., Virot, E., Hutchinson, J. W., & Rubinstein, S. M. (2018). On establishing buckling knockdowns for imperfection-sensitive shell structures. Journal of Applied Mechanics, 85(9). GerasimidisS. VirotE. HutchinsonJ. W. RubinsteinS. M. 2018 On establishing buckling knockdowns for imperfection-sensitive shell structures Journal of Applied Mechanics 85 9 Search in Google Scholar

Fatemi, S. M., Showkati, H., & Maali, M. (2013). Experiments on imperfect cylindrical shells under uniform external pressure. Thin-Walled Structures, 65, 14–25. FatemiS. M. ShowkatiH. MaaliM. 2013 Experiments on imperfect cylindrical shells under uniform external pressure Thin-Walled Structures 65 14 25 Search in Google Scholar

Aydin, A. C., Maali, M., Kiliç, M., Bayrak, B., & Akarsu, O. (2023). A numerical perspective for CFRP wrapped thin walled steel cylinders. Steel Construction. Article in Press. AydinA. C. MaaliM. KiliçM. BayrakB. AkarsuO. 2023 A numerical perspective for CFRP wrapped thin walled steel cylinders. Steel Construction Article in Press Search in Google Scholar

Pan, J., & Liang, S. (2020). Buckling analysis of open-topped steel tanks under external pressure. SN Applied Sciences, 2(4), 535. PanJ. LiangS. 2020 Buckling analysis of open-topped steel tanks under external pressure SN Applied Sciences 2 4 535 Search in Google Scholar

Chen, L., Rotter, J. M., & Doerich-Stavridis, C. (2012). Practical calculations for uniform external pressure buckling in cylindrical shells with stepped walls. Thin-Walled Structures, 61, 162–168. ChenL. RotterJ. M. Doerich-StavridisC. 2012 Practical calculations for uniform external pressure buckling in cylindrical shells with stepped walls Thin-Walled Structures 61 162 168 Search in Google Scholar

Korucuk, F. M. A., Maali, M., Kılıç, M., & Aydın, A. C. (2019). Experimental analysis of the effect of dent variation on the buckling capacity of thin-walled cylindrical shells. Thin-walled structures, 143, 106259. KorucukF. M. A. MaaliM. KılıçM. AydınA. C. 2019 Experimental analysis of the effect of dent variation on the buckling capacity of thin-walled cylindrical shells Thin-walled structures 143 106259 Search in Google Scholar

Rathinam, N., & Prabu, B. (2015). Numerical study on influence of dent parameters on critical buckling pressure of thin cylindrical shell subjected to uniform lateral pressure. Thin-Walled Structures, 88, 1–15. RathinamN. PrabuB. 2015 Numerical study on influence of dent parameters on critical buckling pressure of thin cylindrical shell subjected to uniform lateral pressure Thin-Walled Structures 88 1 15 Search in Google Scholar

Ghazijahani, T. G., Dizaji, H. S., Nozohor, J., & Zirakian, T. (2015). Experiments on corrugated thin cylindrical shells under uniform external pressure. Ocean Engineering, 106, 68–76. GhazijahaniT. G. DizajiH. S. NozohorJ. ZirakianT. 2015 Experiments on corrugated thin cylindrical shells under uniform external pressure Ocean Engineering 106 68 76 Search in Google Scholar

Zeybek, Ö. (2022). The stability of anchored cylindrical steel tanks with a secondary stiffening ring. International Journal of Pressure Vessels and Piping, 198, 104661. ZeybekÖ. 2022 The stability of anchored cylindrical steel tanks with a secondary stiffening ring International Journal of Pressure Vessels and Piping 198 104661 Search in Google Scholar

Jawad, M. (2012). Theory and design of plate and shell structures. Springer Science & Business Media. JawadM. 2012 Theory and design of plate and shell structures Springer Science & Business Media Search in Google Scholar

Ross, C. T. (2011). Pressure vessels: external pressure technology. Elsevier. RossC. T. 2011 Pressure vessels: external pressure technology Elsevier Search in Google Scholar

Ventsel, E., Krauthammer, T., & Carrera, E. J. A. M. R. (2002). Thin plates and shells: theory, analysis, and applications. Appl. Mech. Rev., 55(4), B72–B73. VentselE. KrauthammerT. CarreraE. J. A. M. R. 2002 Thin plates and shells: theory, analysis, and applications Appl. Mech. Rev. 55 4 B72 B73 Search in Google Scholar

Seide, P., Weingarten, V., & Petersen, J. (1965). NASA/SP-8007, Buckling of thinwalled circular cylinders. Nasa Space Vehicle Design Criteria (Structures). SeideP. WeingartenV. PetersenJ. 1965 NASA/SP-8007, Buckling of thinwalled circular cylinders Nasa Space Vehicle Design Criteria (Structures) Search in Google Scholar

Teng, J. G., Zhao, Y., & Lam, L. (2001). Techniques for buckling experiments on steel silo transition junctions. Thin-Walled Structures, 39(8), 685–707. TengJ. G. ZhaoY. LamL. 2001 Techniques for buckling experiments on steel silo transition junctions Thin-Walled Structures 39 8 685 707 Search in Google Scholar

Aydin, A. C., Maali, M., Kiliç, M., Bayrak, B., & Akarsu, O. (2023). A numerical perspective for CFRP wrapped thin walled steel cylinders. Steel Construction. AydinA. C. MaaliM. KiliçM. BayrakB. AkarsuO. 2023 A numerical perspective for CFRP wrapped thin walled steel cylinders Steel Construction Search in Google Scholar

ANSYS, I., Workbench user's guide. 2016, Release. ANSYS, I. Workbench user's guide 2016 Release. Search in Google Scholar

Song, C. Y., Teng, J. G., & Rotter, J. M. (2004). Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression. International Journal of Solids and Structures, 41(24–25), 7155–7180. SongC. Y. TengJ. G. RotterJ. M. 2004 Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression International Journal of Solids and Structures 41 24–25 7155 7180 Search in Google Scholar

Cai, M., Holst, J. M. F. G., & Rotter, J. M. (2002, June). Buckling strength of thin cylindrical shells under localized axial compression. In EM2002, 15th ASCE Engineering Mechanics Conference (pp. 2–5). New York: Columbia University. CaiM. HolstJ. M. F. G. RotterJ. M. 2002 June Buckling strength of thin cylindrical shells under localized axial compression In EM2002, 15th ASCE Engineering Mechanics Conference 2 5 New York Columbia University Search in Google Scholar

Prabu, B., Raviprakash, A. V., & Venkatraman, A. (2010). Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression. Thin-Walled Structures, 48(8), 639–649. PrabuB. RaviprakashA. V. VenkatramanA. 2010 Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression Thin-Walled Structures 48 8 639 649 Search in Google Scholar

Gardner, L., & Ashraf, M. (2006). Structural design for non-linear metallic materials. Engineering structures, 28(6), 926–934. GardnerL. AshrafM. 2006 Structural design for non-linear metallic materials Engineering structures 28 6 926 934 Search in Google Scholar

Combescure, A., & Gusic, G. (2001). Nonlinear buckling of cylinders under external pressure with nonaxisymmetric thickness imperfections using the COMI axisymmetric shell element. International Journal of Solids and Structures, 38(34–35), 6207–6226. CombescureA. GusicG. 2001 Nonlinear buckling of cylinders under external pressure with nonaxisymmetric thickness imperfections using the COMI axisymmetric shell element International Journal of Solids and Structures 38 34–35 6207 6226 Search in Google Scholar

Windenburg, D. F., & Trilling, C. (1934). Collapse by instability of thin cylindrical shells under external pressure. Trans. Asme, 11, 819–825. WindenburgD. F. TrillingC. 1934 Collapse by instability of thin cylindrical shells under external pressure Trans. Asme 11 819 825 Search in Google Scholar

eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings