Open Access

Analysis of the Degradation Process of Sand-Lime Plasters Under the Impact of Crystallization Pressure


Cite

Figure 1.

Degradation of basement wall plaster in the single-family residential building [4]
Degradation of basement wall plaster in the single-family residential building [4]

Figure 2.

Tensile strength measurement of plaster while stretching the sample
Tensile strength measurement of plaster while stretching the sample

Figure 3.

Polar-symmetric deformation of a thick-walled spherical tank: a) general view of the model, b) load diagram, c) stress distribution (circumferential stress σt = σz, normal stress σr, as in [30])
Polar-symmetric deformation of a thick-walled spherical tank: a) general view of the model, b) load diagram, c) stress distribution (circumferential stress σt = σz, normal stress σr, as in [30])

Figure 4.

Schematic of the adopted porous plaster model
Schematic of the adopted porous plaster model

Figure 5.

Results of tensile strength of the tested sand-lime plaster
Results of tensile strength of the tested sand-lime plaster

Figure 6.

Values of circumferential stresses depending on internal radius
Values of circumferential stresses depending on internal radius

Figure 7.

Exemplary results of porosimetric tests of sample 3
Exemplary results of porosimetric tests of sample 3

Crystallization pressure of portlandite for different temperatures and supersaturation degrees

s Pcryst [MPa]
273.15 K 283.15 K 293.15 K
1 0 0 0
1.1 12.76 13.23 13.69
1.5 54.28 56.27 58.26
2 92.80 96.19 99.59
5 215.46 223.35 231.24
10 308.26 319.54 330.83

Values of circumferential stresses as a function of expansion pressure

Pa [MPa] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 15.0 20.0
σt [MPa] 1.07 2.15 3.22 4.3 5.37 6.44 7.52 16.11 21.4

Parameters of plaster models (Fig. 4)

Share in pore radii range [%] Total open porosity [%] Corresponding radius “ai” [cm] Modeled porosity [%]
3.15 a0 = 0.206 P0 = 0.8719
23.96 27.68 a1= 0.405 P1 = 6.6321
62.08 a2 = 0.556 P2 =17.1837
10.81 a3 = 0.310 P3 = 2.9922

Crystallization pressure of brucite for different temperatures and supersaturation degrees

s Pcryst [MPa]
273.15 K 283.15 K 293.15 K
1 0 0 0
1.1 16.88 17.50 18.12
1.5 71.83 74.46 77.09
2 122.79 127.28 131.79
5 285.10 295.54 305.98
10 407.89 422.83 437.76

Circumferential stresses “σt” for b=1, 1.25 and 1.5

a P for b=1 σt a P for b=1.25 σt a P for b=1.5 σt
0.1 0.001 0.502 0.1 0.000512 0.501 0.1 0.000296 0.5
0.15 0.003375 0.505 0.15 0.001728 0.503 0.15 0.001 0.502
0.2 0.008 0.512 0.2 0.004096 0.506 0.2 0.002370 0.504
0.25 0.015625 0.524 0.25 0.008 0.512 0.25 0.004629 0.507
0.3 0.027 0.542 0.3 0.013824 0.521 0.3 0.008 0.512
0.35 0.042875 0.567 0.35 0.021952 0.534 0.35 0.012704 0.519
0.4 0.064 0.603 0.4 0.032768 0.551 0.4 0.018963 0.529
0.5 0.125 0.714 0.5 0.064 0.603 0.5 0.037037 0.558
0.6 0.216 0.913 0.6 0.110592 0.687 0.6 0.064 0.603
0.7 0.343 1.283 0.7 0.175616 0.82 0.7 0.10163 0.67
0.8 0.512 2.074 0.8 0.262144 1.033 0.8 0.151704 0.768
0.9 0.729 4.535 0.9 0.373248 1.393 0.9 0.216 0.913

Circumferential stresses “σt” for b=1.75, 2 and 3

a P for b=1.75 σt a P for b=2 σt a P for b=3 σt
0.1 0.000187 0.5 0.1 0.000125 0.5 0.1 0.000037 0.5
0.15 0.000630 0.501 0.15 0.000422 0.501 0.15 0.000125 0.5
0.2 0.001 0.502 0.2 0.001 0.502 0.2 0.000296 0.5
0.25 0.002915 0.504 0.25 0.001953 0.503 0.25 0.000578 0.501
0.3 0.005038 0.508 0.3 0.003375 0.505 0.3 0.001 0.502
0.35 0.008 0.512 0.35 0.005359 0.508 0.35 0.00158 0.5023
0.4 0.011942 0.518 0.4 0.008 0.512 0.4 0.00237 0.504
0.5 0.023324 0.536 0.5 0.015625 0.524 0.5 0.00462 0.507
0.6 0.040303 0.563 0.6 0.027 0.542 0.6 0.008 0.512
0.7 0.064 0.603 0.7 0.042875 0.567 0.7 0.0127 0.519
0.8 0.095534 0.658 0.8 0.064 0.603 0.8 0.019 0.529
0.9 0.136023 0.736 0.9 0.091125 0.65 0.9 0.027 0.542

Crystallization pressure of ettringite for different temperatures and supersaturation degrees

s Pcryst [MPa]
273.15 K 283.15 K 293.15 K
1 0 0 0
1.1 4.35 4.51 4.67
1.5 18.52 19.20 19.88
2 31.66 32.82 33.98
5 73.52 76.21 78.90
10 105.18 109.03 112.88

Crystallization pressure of calcite at different temperatures

s Pcryst [MPa]
273.15 K 283.15 K 293.15 K
1.000 0 0 0
1.001 0.12 0.13 0.13
1.002 0.25 0.25 0.26
1.003 0.37 0.38 0.39
1.004 0.49 0.51 0.53
1.005 0.61 0.63 0.66
1.006 0.73 0.76 0.79
1.007 0.86 0.89 0.92
1.008 0.98 1.01 1.05
1.009 1.1 1.14 1.18
1.01 1.22 1.26 1.31
1.02 2.43 2.52 2.61
1.03 3.63 3.76 3.89
1.04 4.81 4.99 5.16
1.05 5.98 6.2 6.42
1.06 7.15 7.41 7.67
1.07 8.3 8.6 8.91
1.08 9.44 9.78 10.1
1.09 10.6 11 11.3
1.1 11.7 12.1 12.5
1.5 49.7 51.5 53.4
2 85 88.1 91.2
5 197 205 212
10 282 293 303

Values of circumferential stresses as a function as internal radius

σt [MPa] Pa [MPa]
a [cm] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 15.0 20.0
0.206 0.51 1.03 1.54 2.05 2.57 3.08 3.59 7.70 10.30
0.310 0.55 1.09 1.64 2.18 2.73 3.28 3.82 8.19 10.90
0.398 0.60 1.20 1.80 2.40 3.00 3.61 4.21 9.01 12.02
0.398 0.81 1.62 2.43 3.25 4.06 4.87 5.68 12.2 16.23

Results of porosimetric tests

Tested parameter Unit Sample 2 Sample 3
Total surface area m2/g 1.837 1.440
Volume median pore diameter μm 1.28 1.84
Apparent density g/ml 1.89 1.79
Specific gravity g/ml 2.55 2.48
Open porosity % 26.01 27.68
Permeability mdarcy 57.0 68.3
Tortuosity - 9.7 9.1
Pore size distribution
P3 > 90 μm % 6.21 5.42
60–90 μm % 1.35 1.33
30–60 μm % 1.95 4.25
20–30 μm % 1.30 3.85
P2 10–20 μm % 2.32 7.89
1–10 μm % 43.56 43.95
0.5–1 μm % 16.20 14.04
P1 0.25–0.5 μm % 10.28 7.23
0.1–0.25 μm % 8.45 5.84
0.05–0.1 μm % 5.23 4.00
P0 0.025–0.05 μm % 1.79 1.45
0.01–0.025 μm % 1.33 0.75
0.006–0.01 μm % 0.03 0.00

Tensile strength of mortar based on standard data [33]

Compressive strength class of mortar [MPa] fm [MPa] fmx [MPa] fm,t [MPa]
M15 15 3.5 1.98
M10 10 2.5 1.43
M5 5 1.6 0.95
M2.5 2.5 0.8 0.48
eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings