Open Access

Numerical Analysis of the Impact of the Use of Personal Protective Equipment on the Face in the Process of Pollutants Spreading Emitted During Breathing


Cite

J. Shi, H. Li, F. Xu, X. Tao, (2021). Materials in advanced design of personal protective equipment: a review, Mater. Today Adv. 12, doi:10.1016/j.mtadv.2021.100171. Shi J. Li H. Xu F. Tao X. 2021 Materials in advanced design of personal protective equipment: a review, Mater Today Adv. 12 doi:10.1016/j.mtadv.2021.100171 Search in Google Scholar

Z. Deng, Q. Chen, (2022). What is suitable social distancing for people wearing face masks during the COVID-19 pandemic?, Indoor Air. 32, 1–15. doi:10.1111/ina.12935. Deng Z. Chen Q. 2022 What is suitable social distancing for people wearing face masks during the COVID-19 pandemic? Indoor Air. 32 1 15 doi:10.1111/ina.12935 Search in Google Scholar

R. Mittal, R. Ni, J.H. Seo, (2020).The flow physics of COVID-19, J. Fluid Mech. 894, 1–14. doi:10.1017/jfm.2020.330. Mittal R. Ni R. Seo J.H. 2020 The flow physics of COVID-19 J. Fluid Mech. 894 1 14 doi:10.1017/jfm.2020.330 Search in Google Scholar

J.W. Tang, A.D. Nicolle, C.A. Klettner, J. Pantelic, L. Wang, A. Bin Suhaimi, A.Y.L. Tan, G.W.X. Ong, R. Su, C. Sekhar, D.D.W. Cheong, K.W. Tham, (2013). Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols, PLoS One. 8, 1–7. doi:10.1371/journal.pone.0059970. Tang J.W. Nicolle A.D. Klettner C.A. Pantelic J. Wang L. Bin Suhaimi A. Tan A.Y.L. Ong G.W.X. Su R. Sekhar C. Cheong D.D.W. Tham K.W. 2013 Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols PLoS One. 8 1 7 doi:10.1371/journal.pone.0059970 Search in Google Scholar

Z.T. Ai, A.K. Melikov, (2018). Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review, Indoor Air. 28, 500–524. doi:10.1111/ina.12465. Ai Z.T. Melikov A.K. 2018 Airborne spread of expiratory droplet nuclei between the occupants of indoor environments A review, Indoor Air. 28 500 524 doi:10.1111/ina.12465 Search in Google Scholar

F.A. Berlanga, I. Olmedo, M. Ruiz de Adana, (2017). Experimental analysis of the air velocity and contaminant dispersion of human exhalation flows, Indoor Air. 27, 803–815. doi:10.1111/ina.12357. Berlanga F.A. Olmedo I. de Adana M. Ruiz 2017 Experimental analysis of the air velocity and contaminant dispersion of human exhalation flows Indoor Air. 27 803 815 doi:10.1111/ina.12357 Search in Google Scholar

J. Laverge, M. Spilak, A. Novoselac, (2014). Experimental assessment of the inhalation zone of standing, sitting and sleeping persons, Build. Environ. 82, 258–266. doi:10.1016/J.BUILDENV.2014.08.014. Laverge J. Spilak M. Novoselac A. 2014 Experimental assessment of the inhalation zone of standing, sitting and sleeping persons Build. Environ. 82 258 266 doi:10.1016/J.BUILDENV.2014.08.014 Search in Google Scholar

C. Xu, P. V. Nielsen, G. Gong, R.L. Jensen, L. Liu, (2015). Influence of air stability and metabolic rate on exhaled flow, Indoor Air. 25, 198–209. doi:10.1111/ina.12135. Xu C. Nielsen P. V. Gong G. Jensen R.L. Liu L. 2015 Influence of air stability and metabolic rate on exhaled flow Indoor Air. 25 198 209 doi:10.1111/ina.12135 Search in Google Scholar

E. Katramiz, D. Al Assaad, N. Ghaddar, K. Ghali, (2020). The effect of human breathing on the effectiveness of intermittent personalized ventilation coupled with mixing ventilation, Build. Environ. 174, 106755. doi:10.1016/j.buildenv.2020.106755. Katramiz E. Al Assaad D. Ghaddar N. Ghali K. 2020 The effect of human breathing on the effectiveness of intermittent personalized ventilation coupled with mixing ventilation Build. Environ. 174 106755 doi:10.1016/j.buildenv.2020.106755 Search in Google Scholar

I. Olmedo, P. V. Nielsen, M. Ruiz de Adana, R.L. Jensen, P. Grzelecki, (2012). Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies, Indoor Air. 22, 64–76. doi:10.1111/j.1600-0668.2011.00736.x. Olmedo I. Nielsen P. V. Ruiz de Adana M. Jensen R.L. Grzelecki P. 2012 Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies Indoor Air. 22 64 76 doi:10.1111/j.1600-0668.2011.00736.x Search in Google Scholar

I. Olmedo, P. V. Nielsen, M.R. de Adana, R.L. Jensen, (2013). The risk of airborne cross-infection in a room with vertical low-velocity ventilation, Indoor Air. 23 (2013) 62–73. doi:10.1111/j.1600-0668.2012.00794.x. Olmedo I. Nielsen P. V. de Adana M.R. Jensen R.L. 2013 The risk of airborne cross-infection in a room with vertical low-velocity ventilation Indoor Air. 23 2013 62 73 doi:10.1111/j.1600-0668.2012.00794.x Search in Google Scholar

Y. Zhang, G. Feng, Y. Bi, Y. Cai, Z. Zhang, G. Cao,(2019) Distribution of droplet aerosols generated by mouth coughing and nose breathing in an air-conditioned room, Sustain. Cities Soc. 51, 101721. doi:10.1016/J.SCS.2019.101721. Zhang Y. Feng G. Bi Y. Cai Y. Zhang Z. Cao G. 2019 Distribution of droplet aerosols generated by mouth coughing and nose breathing in an air-conditioned room Sustain. Cities Soc. 51 101721 doi:10.1016/J.SCS.2019.101721 Search in Google Scholar

Q. Ge, X. Li, K. Inthavong, J. Tu, (2013). Numerical study of the effects of human body heat on particle transport and inhalation in indoor environment, Build. Environ. 59, 1–9. doi:10.1016/j.buildenv.2012.08.002. Ge Q. Li X. Inthavong K. Tu J. 2013 Numerical study of the effects of human body heat on particle transport and inhalation in indoor environment Build. Environ. 59 1 9 doi:10.1016/j.buildenv.2012.08.002 Search in Google Scholar

G. Feng, Y. Bi, Y. Zhang, Y. Cai, K. Huang, (2020). Study on the motion law of aerosols produced by human respiration under the action of thermal plume of different intensities, Sustain. Cities Soc. 54 101935. doi:10.1016/J.SCS.2019.101935. Feng G. Bi Y. Zhang Y. Cai Y. Huang K. 2020 Study on the motion law of aerosols produced by human respiration under the action of thermal plume of different intensities Sustain. Cities Soc. 54 101935 doi:10.1016/J.SCS.2019.101935 Search in Google Scholar

J.M. Villafruela, I. Olmedo, M. Ruiz de Adana, C. Méndez, P. V. Nielsen, (2013). CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies, Build. Environ. 62, 191–200. doi:10.1016/j.buildenv.2013.01.022. Villafruela J.M. Olmedo I. de Adana M. Ruiz Méndez C. Nielsen P. V. 2013 CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies Build. Environ. 62 191 200 doi:10.1016/j.buildenv.2013.01.022 Search in Google Scholar

J.M. Villafruela, I. Olmedo, J.F. San José, (2016)Influence of human breathing modes on airborne cross infection risk, Build. Environ. 106, 340–351. doi:10.1016/j.buildenv.2016.07.005. Villafruela J.M. Olmedo I. San José J.F. 2016 Influence of human breathing modes on airborne cross infection risk Build. Environ. 106 340 351 doi:10.1016/j.buildenv.2016.07.005 Search in Google Scholar

C. Xu, P. V. Nielsen, G. Gong, L. Liu, R.L. Jensen,(2015) Measuring the exhaled breath of a manikin and human subjects, Indoor Air. 25, 188–197. doi:10.1111/ina.12129. Xu C. Nielsen P. V. Gong G. Liu L. Jensen R.L. 2015 Measuring the exhaled breath of a manikin and human subjects Indoor Air. 25 188 197 doi:10.1111/ina.12129 Search in Google Scholar

J.K. Gupta, C.H. Lin, Q. Chen, (2010). Characterizing exhaled airflow from breathing and talking, Indoor Air. 20, 31–39. doi:10.1111/j.1600-0668.2009.00623.x. Gupta J.K. Lin C.H. Chen Q. 2010 Characterizing exhaled airflow from breathing and talking Indoor Air. 20 31 39 doi:10.1111/j.1600-0668.2009.00623.x Search in Google Scholar

C. Xu, P. V. Nielsen, L. Liu, R.L. Jensen, G. Gong, (2017)Human exhalation characterization with the aid of schlieren imaging technique, Build. Environ. 112, 190–199. doi:10.1016/j.buildenv.2016.11.032. Xu C. Nielsen P. V. Liu L. Jensen R.L. Gong G. 2017 Human exhalation characterization with the aid of schlieren imaging technique Build. Environ. 112 190 199 doi:10.1016/j.buildenv.2016.11.032 Search in Google Scholar

W. Su, B. Yang, A. Melikov, C. Liang, Y. Lu, F. Wang, A. Li, Z. Lin, X. Li, G. Cao, R. Kosonen, (2022). Infection probability under different air distribution patterns, Build. Environ. 207, 108555. doi:10.1016/j.buildenv.2021.108555. Su W. Yang B. Melikov A. Liang C. Lu Y. Wang F. Li A. Lin Z. Li X. Cao G. Kosonen R. 2022 Infection probability under different air distribution patterns Build. Environ. 207 108555 doi:10.1016/j.buildenv.2021.108555 Search in Google Scholar

T. Zhang, S. Yin, S. Wang, (2011). Quantify impacted scope of human expired air under different head postures and varying exhalation rates, Build. Environ. 46 1928–1936. doi:10.1016/j.buildenv.2011.03.014. Zhang T. Yin S. Wang S. 2011 Quantify impacted scope of human expired air under different head postures and varying exhalation rates Build. Environ. 46 1928 1936 doi:10.1016/j.buildenv.2011.03.014 Search in Google Scholar

A. Issakhov, Y. Zhandaulet, P. Omarova, A. Alimbek, A. Borsikbayeva, A. Mustafayeva, (2021). A numerical assessment of social distancing of preventing airborne transmission of COVID-19 during different breathing and coughing processes, Nature Publishing Group UK, 2021. doi:10.1038/s41598-021-88645-2. Issakhov A. Zhandaulet Y. Omarova P. Alimbek A. Borsikbayeva A. Mustafayeva A. 2021 A numerical assessment of social distancing of preventing airborne transmission of COVID-19 during different breathing and coughing processes Nature Publishing Group UK 2021. doi:10.1038/s41598-021-88645-2 Search in Google Scholar

M. Ivanov, S. Mijorski, (2017). CFD Modelling of Flow Interaction in the Breathing Zone of a Virtual Thermal Manikin, Energy Procedia. 112, 240–251. doi:10.1016/j.egypro.2017.03.1093. Ivanov M. Mijorski S. 2017 CFD Modelling of Flow Interaction in the Breathing Zone of a Virtual Thermal Manikin Energy Procedia 112 240 251 doi:10.1016/j.egypro.2017.03.1093 Search in Google Scholar

A. Bulińska, Z. Buliński, (2015). A CFD analysis of different human breathing models and its influence on spatial distribution of indoor air parameters, Comput. Assist. Methods Eng. Sci. 22, 213–227. Bulińska A. Buliński Z. 2015 A CFD analysis of different human breathing models and its influence on spatial distribution of indoor air parameters Comput. Assist. Methods Eng. Sci. 22 213 227 Search in Google Scholar

S. Saran, M. Gurjar, A.K. Baronia, A. Lohiya, A. Azim, B. Poddar, N.S. Rao, (2020). Personal protective equipment during COVID-19 pandemic: a narrative review on technical aspects, Expert Rev. Med. Devices. 17, 1265–1276. doi:10.1080/17434440.2020.1852079. Saran S. Gurjar M. Baronia A.K. Lohiya A. Azim A. Poddar B. Rao N.S. 2020 Personal protective equipment during COVID-19 pandemic: a narrative review on technical aspects Expert Rev. Med. Devices. 17 1265 1276 doi:10.1080/17434440.2020.1852079 Search in Google Scholar

D. Tretiakow, K. Tesch, A. Skorek, (2021). Mitigation effect of face shield to reduce SARS-CoV-2 airborne transmission risk: Preliminary simulations based on computed tomography, Environ. Res. 198, doi:10.1016/j.envres.2021.111229. Tretiakow D. Tesch K. Skorek A. 2021 Mitigation effect of face shield to reduce SARS-CoV-2 airborne transmission risk: Preliminary simulations based on computed tomography Environ. Res. 198 doi:10.1016/j.envres.2021.111229 Search in Google Scholar

A. Ugarte-Anero, U. Fernandez-Gamiz, I. Aramendia, E. Zulueta, J.M. Lopez-Guede, (2021). Numerical modeling of face shield protection against a sneeze, Mathematics. 9, doi:10.3390/math9131582. Ugarte-Anero A. Fernandez-Gamiz U. Aramendia I. Zulueta E. Lopez-Guede J.M. 2021 Numerical modeling of face shield protection against a sneeze Mathematics 9 doi:10.3390/math9131582 Search in Google Scholar

Z. Jia, Z. Ai, (2022). Face shield intensifies inhaled exposure to self-generated bio-effluents, Build. Environ. 217, 109070. doi:10.1016/j.buildenv.2022.109070. Jia Z. Ai Z. 2022 Face shield intensifies inhaled exposure to self-generated bio-effluents Build. Environ. 217 109070 doi:10.1016/j.buildenv.2022.109070 Search in Google Scholar

T. Dbouk, D. Drikakis, (2020). On respiratory droplets and face masks, Phys. Fluids. 32, doi:10.1063/5.0015044. Dbouk T. Drikakis D. 2020 On respiratory droplets and face masks Phys. Fluids. 32 doi:10.1063/5.0015044 Search in Google Scholar

W. Kierat, Z. Ai, A. Melikov, D. Markov, M. Bivolarova, (2022). Towards enabling accurate measurements of CO2 exposure indoors, Build. Environ. 213, 108883. doi:10.1016/j.buildenv.2022.108883. Kierat W. Ai Z. Melikov A. Markov D. Bivolarova M. 2022 Towards enabling accurate measurements of CO2 exposure indoors Build. Environ. 213 108883 doi:10.1016/j.buildenv.2022.108883 Search in Google Scholar

S.N. Rudnick, D.K. Milton, (2003) Risk of indoor airborne infection transmission estimated from carbon dioxide concentration, Indoor Air. 13, 237–245. doi:10.1034/j.1600-0668.2003.00189.x. Rudnick S.N. Milton D.K. 2003 Risk of indoor airborne infection transmission estimated from carbon dioxide concentration Indoor Air. 13 237 245 doi:10.1034/j.1600-0668.2003.00189.x Search in Google Scholar

M.Z. Bazant, O. Kodio, A.E. Cohen, K. Khan, Z. Gu, J.W.M. Bush, (2021). Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19, Flow. 1, 1–20. doi:10.1017/flo.2021.10. Bazant M.Z. Kodio O. Cohen A.E. Khan K. Gu Z. Bush J.W.M. 2021 Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19 Flow. 1 1 20 doi:10.1017/flo.2021.10 Search in Google Scholar

E.C. Hyldgaard, (1998). Humans as a source of heat and air pollution. 4th International Conference on Air Distribution in Rooms Dept. of Building Technology and Structural Engineering. Indoor Environmental Technology Vol. R9414 No. 39. Aalborg University, Denmark. Hyldgaard E.C. 1998 Humans as a source of heat and air pollution. 4th International Conference on Air Distribution in Rooms Dept. of Building Technology and Structural Engineering Indoor Environmental Technology Vol. R9414 No. 39 Aalborg University Denmark Search in Google Scholar

ANSYS Meshing User’s Guide. (2010). ANSYS, Inc, Canonsburg. ANSYS Meshing User’s Guide 2010 ANSYS, Inc Canonsburg Search in Google Scholar

Z. Buliński, A. Kabaj, T. Krysiński, I. Szczygieł, W. Stanek, B. Rutczyk, L. Czarnowska, P. Gładysz, (2019). A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions, Energy Conversion and Management 195, 125–138. doi:10.1016/j.enconman.2019.04.089 Buliński Z. Kabaj A. Krysiński T. Szczygieł I. Stanek W. Rutczyk B. Czarnowska L. Gładysz P. 2019 A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions Energy Conversion and Management 195 125 138 doi:10.1016/j.enconman.2019.04.089 Search in Google Scholar

Z. Buliński. (2009). Numerical modelling and credibility analysis of free surface flows in selected industrial processes. PhD Thesis. Gliwice Buliński Z. 2009 Numerical modelling and credibility analysis of free surface flows in selected industrial processes PhD Thesis Gliwice Search in Google Scholar

eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings