Open Access

Architectural Comparison of Chosen Passive Building Standards


Cite

Communication from the Commission to the European Parliament, the Council, “The European Economic and Social Committee and the Committee of Regions, Stepping up Europe’s 2030 climate ambition Investing in a climate-neutral future for the benefit of our people, Brussels, on 17.9.2020, COM(2020) 562 final Communication from the Commission to the European Parliament the Council, “The European Economic and Social Committee and the Committee of Regions, Stepping up Europe’s 2030 climate ambition Investing in a climate-neutral future for the benefit of our people, Brussels, on 17.9.2020, COM(2020) 562 final Search in Google Scholar

https://www.iea.org/topics/buildings access date 28.05.2021 https://www.iea.org/topics/buildings access date 28.05.2021 Search in Google Scholar

Ford B., (2001). Passive downdraught evaporative cooling: Principles and practice. Architectural Research Quarterly, 5(3), 271–280. doi:10.1017/S1359135501001312 Ford B. 2001 Passive downdraught evaporative cooling: Principles and practice Architectural Research Quarterly 5 3 271 280 doi:10.1017/S1359135501001312 Open DOISearch in Google Scholar

Flynn E., (2016). (Experimenting with) Living Architecture: A practice perspective. Architectural Research Quarterly, 20(1), 20–28. doi:10.1017/S1359135516000166 Flynn E. 2016 (Experimenting with) Living Architecture: A practice perspective Architectural Research Quarterly 20 1 20 28 doi:10.1017/S1359135516000166 Open DOISearch in Google Scholar

Schiano-Phan R., (2010). Environmental retrofit: Building integrated passive cooling in housing. Architectural Research Quarterly, 14(2), 139–151. doi:10.1017/S1359135510000758 Schiano-Phan R. 2010 Environmental retrofit: Building integrated passive cooling in housing Architectural Research Quarterly 14 2 139 151 doi:10.1017/S1359135510000758 Open DOISearch in Google Scholar

Pylsy P., Lylykangas K., Kurnitski J., (2020). Buildings’ energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production. Renewable and Sustainable Energy Reviews, 134, 110299, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110299. Pylsy P. Lylykangas K. Kurnitski J. 2020 Buildings’ energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production Renewable and Sustainable Energy Reviews 134 110299 ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110299 10.1016/j.rser.2020.110299 Search in Google Scholar

Lin Y.-H., Lin M.-D., Tsai K.-T., Deng M.-J., Ishii H., (2021). Multi-objective optimization design of green building envelopes and air conditioning systems for energy conservation and CO2 emission reduction. Sustainable Cities and Society, 64, 102555, ISSN 2210-6707, https://doi.org/10.1016/j.scs.2020.102555. Lin Y.-H. Lin M.-D. Tsai K.-T. Deng M.-J. Ishii H. 2021 Multi-objective optimization design of green building envelopes and air conditioning systems for energy conservation and CO2 emission reduction Sustainable Cities and Society 64 102555 ISSN 2210-6707, https://doi.org/10.1016/j.scs.2020.102555 10.1016/j.scs.2020.102555 Search in Google Scholar

Piccardo C., Dodoo A., Gustavsson L., (2020). Retrofitting a building to passive house level: A life cycle carbon balance. Energy and Buildings, 223, 110135, ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2020.110135. Piccardo C. Dodoo A. Gustavsson L. 2020 Retrofitting a building to passive house level: A life cycle carbon balance Energy and Buildings 223 110135 ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2020.110135 10.1016/j.enbuild.2020.110135 Search in Google Scholar

Hajat S., Vardoulakis S., Heaviside C., Eggen B. (2014). Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J. Epidemiol. Community Health, 68(7), 641–648. CrossRefView Record in ScopusGoogle Scholar. Hajat S. Vardoulakis S. Heaviside C. Eggen B. 2014 Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s J. Epidemiol. Community Health 68 7 641 648 CrossRefView Record in ScopusGoogle Scholar. 10.1136/jech-2013-202449 Search in Google Scholar

Beizaee A., Lomas K.J., Firth S.K. (2013). National survey of summertime temperatures and overheating risk in English homes. Build. Environ., 65, 1–17 Google Scholar. Beizaee A. Lomas K.J. Firth S.K. 2013 National survey of summertime temperatures and overheating risk in English homes Build. Environ. 65 1 17 Google Scholar 10.1016/j.buildenv.2013.03.011 Search in Google Scholar

Morgan C., Foster J.A., Poston A., Sharpe T.R. (2017). Overheating in Scotland: contributing factors in occupied homes. Build. Res. Inf. (1–2), 143–156 Google Scholar. Morgan C. Foster J.A. Poston A. Sharpe T.R. 2017 Overheating in Scotland: contributing factors in occupied homes Build. Res. Inf. 1–2 143 156 Google Scholar 10.1080/09613218.2017.1241472 Search in Google Scholar

Lomas K.J., Porritt S.M. (2017). Overheating in buildings: lessons from research. Build. Res. Inf., 45(1–2), 1–18, CrossRefView Record in ScopusGoogle Scholar. Lomas K.J. Porritt S.M. 2017 Overheating in buildings: lessons from research Build. Res. Inf. 45 1–2 1 18 CrossRefView Record in ScopusGoogle Scholar 10.1080/09613218.2017.1256136 Search in Google Scholar

Hajat S., Vardoulakis S., Heaviside C., Eggen B. (2014). Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J. Epidemiol. Community Health, 68(7), 641–648. CrossRefView Record in ScopusGoogle Scholar Hajat S. Vardoulakis S. Heaviside C. Eggen B. 2014 Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s J. Epidemiol. Community Health 68 7 641 648 CrossRefView Record in ScopusGoogle Scholar 10.1136/jech-2013-202449 Search in Google Scholar

Hrivnak J., (2007). Is relative sustainability relevant? Architectural Research Quarterly, 11(2), 167–176. doi:10.1017/S1359135507000644 Hrivnak J. 2007 Is relative sustainability relevant? Architectural Research Quarterly 11 2 167 176 doi:10.1017/S1359135507000644 Open DOISearch in Google Scholar

Voelcker A., (1999). Handbook of Sustainable Building by David Anink, Chiel Boonstra and John Mak James and James, London, 1996176 ISBN 1873936 389 (pb). Architectural Research Quarterly, 3(3), 286–286. doi:10.1017/S1359135500002128 Voelcker A. 1999 Handbook of Sustainable Building by David Anink, Chiel Boonstra and John Mak James and James, London, 1996176 ISBN 1873936 389 (pb) Architectural Research Quarterly 3 3 286 286 doi:10.1017/S1359135500002128 Open DOISearch in Google Scholar

Goncalves V., Ogunjimi Y., Heo Y., (2021). Scrutinizing modeling and analysis methods for evaluating overheating risks in passive houses. Energy and Buildings, 234, 110701. ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2020.110701. Goncalves V. Ogunjimi Y. Heo Y. 2021 Scrutinizing modeling and analysis methods for evaluating overheating risks in passive houses Energy and Buildings 234 110701 ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2020.110701 10.1016/j.enbuild.2020.110701 Search in Google Scholar

Gourlis G., Kovacic I., (2017). Passive measures for preventing summer overheating in industrial buildings under consideration of varying manufacturing process loads. Energy, 137, 1175–1185, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2017.05.134. Gourlis G. Kovacic I. 2017 Passive measures for preventing summer overheating in industrial buildings under consideration of varying manufacturing process loads Energy 137 1175 1185 ISSN 0360-5442, https://doi.org/10.1016/j.energy.2017.05.134 10.1016/j.energy.2017.05.134 Search in Google Scholar

Kisilewicz T., Dudzińska A., (2015). Summer overheating of a passive sports hall building. Archives of Civil and Mechanical Engineering, 15(4), 1193–1201. ISSN 1644-9665. https://doi.org/10.1016/j.acme.2015.03.002. Kisilewicz T. Dudzińska A. 2015 Summer overheating of a passive sports hall building Archives of Civil and Mechanical Engineering 15 4 1193 1201 ISSN 1644-9665. https://doi.org/10.1016/j.acme.2015.03.002 10.1016/j.acme.2015.03.002 Search in Google Scholar

Sepúlveda A., De Luca F., Thalfeldt M., Kurnitski J., (2020). Analyzing the fulfillment of daylight and overheating requirements in residential and office buildings in Estonia. Building and Environment, 180, 107036, ISSN 0360-1323. https://doi.org/10.1016/j.buildenv.2020.107036. Sepúlveda A. De Luca F. Thalfeldt M. Kurnitski J. 2020 Analyzing the fulfillment of daylight and overheating requirements in residential and office buildings in Estonia Building and Environment 180 107036 ISSN 0360-1323. https://doi.org/10.1016/j.buildenv.2020.107036 10.1016/j.buildenv.2020.107036 Search in Google Scholar

Ah-Young L., Miryoung Y., Eun-Hye K., Hyun-Ah K., Myoung Ju L., Hae-Kwan C., (2021). Effects of mechanical ventilation on indoor air quality and occupant health status in energy-efficient homes: A longitudinal field study. Science of The Total Environment, 785. https://doi.org/10.1016/j.scitotenv.2021.147324. Ah-Young L. Miryoung Y. Eun-Hye K. Hyun-Ah K. Myoung Ju L. Hae-Kwan C. 2021 Effects of mechanical ventilation on indoor air quality and occupant health status in energy-efficient homes: A longitudinal field study Science of The Total Environment 785 https://doi.org/10.1016/j.scitotenv.2021.147324 10.1016/j.scitotenv.2021.147324 Search in Google Scholar

Ben-David T., Waring M. S., (2016). Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Building and Environment, 104, 320–336. https://doi.org/10.1016/j.buildenv.2016.05.007. Ben-David T. Waring M. S. 2016 Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities Building and Environment 104 320 336 https://doi.org/10.1016/j.buildenv.2016.05.007 10.1016/j.buildenv.2016.05.007 Search in Google Scholar

Baker N., (1996). The irritable occupant: Recent developments in thermal comfort theory. Architectural Research Quarterly, 2(2), 84–90. doi:10.1017/S1359135500001287 Baker N. 1996 The irritable occupant: Recent developments in thermal comfort theory Architectural Research Quarterly 2 2 84 90 doi:10.1017/S1359135500001287 Open DOISearch in Google Scholar

Heyman J., (1999). Developments in Structural Form by Rowland Mainstone 2nd edition Architectural Press, Oxford, 1998384. Architectural Research Quarterly, 3(3), 285–286. doi:10.1017/S1359135500002116 Heyman J. 1999 Developments in Structural Form by Rowland Mainstone 2nd edition Architectural Press, Oxford, 1998384 Architectural Research Quarterly 3 3 285 286 doi:10.1017/S1359135500002116 Open DOISearch in Google Scholar

Ramirez-Figueroa C., Beckett R., (2020). Living with buildings, living with microbes: Probiosis and architecture. Architectural Research Quarterly, 24(2), 155–168. doi:10.1017/S1359135520000202 Ramirez-Figueroa C. Beckett R. 2020 Living with buildings, living with microbes: Probiosis and architecture Architectural Research Quarterly 24 2 155 168 doi:10.1017/S1359135520000202 Open DOISearch in Google Scholar

Cook J., (1997). The Skyscraper Bioclimatically Considered By Ken Yeang. Academy Editions, 269 pp., numerous illus. ISBN 1 85490 431 0 PB. Architectural Research Quarterly, 2(3), 92–94. doi:10.1017/S1359135500001470 Cook J. 1997 The Skyscraper Bioclimatically Considered By Ken Yeang. Academy Editions, 269 pp., numerous illus. ISBN 1 85490 431 0 PB Architectural Research Quarterly 2 3 92 94 doi:10.1017/S1359135500001470 Open DOISearch in Google Scholar

Junghans L., (2016). The Energy Concept in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel, 45–54. Junghans L. 2016 The Energy Concept in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel 45 54 10.1515/9783035603873-006 Search in Google Scholar

Purvis B., Mao Y., Robinson D., (2019). Three pillars of sustainability: in search of conceptual origins. Sustainability Science. 14(3), 681–695. Purvis B. Mao Y. Robinson D. 2019 Three pillars of sustainability: in search of conceptual origins Sustainability Science. 14 3 681 695 10.1007/s11625-018-0627-5 Search in Google Scholar

Feist W., (2002). Passivhaus Projektierungs Paket 2002, Anforderungen an qualitaetsgepruefte, Passivhaeuser Passivhaus Institut, Darmstadt, Germany, (Passive house planning package 2002, requirements for quality-tested passive houses Passive House Institute, Darmstadt, Germany) Google Scholar. Feist W. 2002 Passivhaus Projektierungs Paket 2002, Anforderungen an qualitaetsgepruefte, Passivhaeuser Passivhaus Institut, Darmstadt, Germany, (Passive house planning package 2002, requirements for quality-tested passive houses Passive House Institute, Darmstadt, Germany) Google Scholar Search in Google Scholar

Feist W., Schnieders J., Dorer V., Haas A., (2005). Reinventing air heating: convenient and comfortable within the frame of the passive house concept. Energy Build, 37, 1186-1203. Feist W. Schnieders J. Dorer V. Haas A. 2005 Reinventing air heating: convenient and comfortable within the frame of the passive house concept Energy Build 37 1186 1203 10.1016/j.enbuild.2005.06.020 Search in Google Scholar

Schnieders J., Hermelink A., (2006). CEPHEUS results: measurements and occupants’ satisfaction provide evidence for Passive House being an option for sustainable building Energy Policy, 151–171. Schnieders J. Hermelink A. 2006 CEPHEUS results: measurements and occupants’ satisfaction provide evidence for Passive House being an option for sustainable building Energy Policy 151 171 10.1016/j.enpol.2004.08.049 Search in Google Scholar

Feist W., Pfluger R., Kaufmann B., Schniders J., Kah O., (2007). Passivehaus-Projektierungspaket Anforderungen an qualitaetsgepruefte Passivhaeuser, Passivhaus Institut, Darmstadt. Feist W. Pfluger R. Kaufmann B. Schniders J. Kah O. 2007 Passivehaus-Projektierungspaket Anforderungen an qualitaetsgepruefte Passivhaeuser Passivhaus Institut Darmstadt Search in Google Scholar

Pitts A., (2017). Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice. Sustainability, 9(2), 272. https://doi.org/10.3390/su9020272 Pitts A. 2017 Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice Sustainability 9 2 272 https://doi.org/10.3390/su9020272 10.3390/su9020272 Search in Google Scholar

Monsen W.A., Klein S.A., Beckman W.A., (1981). Prediction of direct gain solar heating system performance. Sol Energy, 27, 143–147. Monsen W.A. Klein S.A. Beckman W.A. 1981 Prediction of direct gain solar heating system performance Sol Energy 27 143 147 10.1016/0038-092X(81)90036-0 Search in Google Scholar

Oliveira A.C., de Oliveira, Fernandes E., (1992). A new simplified method for evaluating the thermal behaviour of direct gain passive solar buildings. Sol Energy, 48, 227–233. Oliveira A.C. de Oliveira Fernandes E. 1992 A new simplified method for evaluating the thermal behaviour of direct gain passive solar buildings Sol Energy 48 227 233 10.1016/0038-092X(92)90095-R Search in Google Scholar

Schnieders J., Feist W., Pfluger R., Kah O., (2007). CEPHEUS 2001 CEPHEUS Naukowa analiza i ocena Raport końcowy. Instytut Budownictwa Pasywnego, Darmstadt 2001/2. Schnieders J. Feist W. Pfluger R. Kah O. 2007 CEPHEUS 2001 CEPHEUS Naukowa analiza i ocena Raport końcowy Instytut Budownictwa Pasywnego Darmstadt 2001/2 Search in Google Scholar

Hui P.S., Wong L.T., Mui P.S., (2008). Using carbon dioxide concentration to assess indoor air quality in offices. Indoor Built Environment, 17, 213–219. Hui P.S. Wong L.T. Mui P.S. 2008 Using carbon dioxide concentration to assess indoor air quality in offices Indoor Built Environment 17 213 219 10.1177/1420326X08091773 Search in Google Scholar

Almeida R.M.S.F., Pinto M., Pinho P.G., de Lemos L.T., (2017). Natural ventilation and indoor air quality in educational buildings: experimental assessment and improvement strategies. Energy Effic, 10. Almeida R.M.S.F. Pinto M. Pinho P.G. de Lemos L.T. 2017 Natural ventilation and indoor air quality in educational buildings: experimental assessment and improvement strategies Energy Effic 10 10.1007/s12053-016-9485-0 Search in Google Scholar

Junghans L., (2016). The Energy Concept in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel, 45-54. Junghans L. 2016 The Energy Concept in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Eberle Dietmar Archer Florian Basel 45 54 10.1515/9783035603873-006 Search in Google Scholar

Keller B., Magyari E., (1998). A universally valid strategy for low energy houses. Renewable Energy, 15, 401–406. Keller B. Magyari E. 1998 A universally valid strategy for low energy houses Renewable Energy 15 401 406 10.1016/B978-008043865-8/50073-8 Search in Google Scholar

Potrč Obrecht T., Premrov M., Žegarac Leskovar V., (2019). Influence of the orientation on the optimal glazing size for passive houses in different European climates (for non-cardinal directions). Solar Energy, 189, 15–25. ISSN 0038-092X. Potrč Obrecht T. Premrov M. Žegarac Leskovar V. 2019 Influence of the orientation on the optimal glazing size for passive houses in different European climates (for non-cardinal directions) Solar Energy 189 15 25 ISSN 0038-092X 10.1016/j.solener.2019.07.037 Search in Google Scholar

Niezabitowska E. D., (2014). Metody i techniki badawcze w architekturze (Research methods and techniques in architecture), Wydawnictwo Politechniki Śląskiej, Gliwice. Niezabitowska E. D. 2014 Metody i techniki badawcze w architekturze (Research methods and techniques in architecture) Wydawnictwo Politechniki Śląskiej Gliwice Search in Google Scholar

Feist W., (1998). Wirtschaftlichkeit ausgewählter Energiesparma nahmen im Gebäudebestand, Passivhaus Institut, Darmstadt (Efficiency of selected energy saving measures in existing buildings, Passive House Institute, Darmstadt). Feist W. 1998 Wirtschaftlichkeit ausgewählter Energiesparma nahmen im Gebäudebestand Passivhaus Institut Darmstadt (Efficiency of selected energy saving measures in existing buildings, Passive House Institute, Darmstadt) Search in Google Scholar

Ciardiello A., Rosso F., Dell’Olmo J., Ciancio V., Ferrero M., Salata F. (2020). Multi-objective approach to the optimization of shape and envelope in building energy design. Applied Energy, 280, 115984. ISSN 0306-2619. Ciardiello A. Rosso F. Dell’Olmo J. Ciancio V. Ferrero M. Salata F. 2020 Multi-objective approach to the optimization of shape and envelope in building energy design Applied Energy 280 115984 ISSN 0306-2619 10.1016/j.apenergy.2020.115984 Search in Google Scholar

Kheiri F., (2018). A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews, 92, 897–920. ISSN 1364-0321. Kheiri F. 2018 A review on optimization methods applied in energy-efficient building geometry and envelope design Renewable and Sustainable Energy Reviews 92 897 920 ISSN 1364-0321 10.1016/j.rser.2018.04.080 Search in Google Scholar

Gleń P., Suchorab Z., Widomski M.K., (2019). The impact of the cubature of the building on the effectiveness of passive housing. AIP Conference Proceedings 2133, 020015. https://doi.org/10.1063/1.5120145 Gleń P. Suchorab Z. Widomski M.K. 2019 The impact of the cubature of the building on the effectiveness of passive housing AIP Conference Proceedings 2133 020015 https://doi.org/10.1063/1.5120145 10.1063/1.5120145 Search in Google Scholar

Parasonis J., Keizikas A., Kalibatiene D., (2012). The relationship between the shape of a building and its energy performance. Architectural Engineering and Design Management, 8(4), 246–256. DOI: 10.1080/ 17452007.2012. 675139 Parasonis J. Keizikas A. Kalibatiene D. 2012 The relationship between the shape of a building and its energy performance Architectural Engineering and Design Management 8 4 246 256 DOI: 10.1080/ 17452007.2012. 675139 Open DOISearch in Google Scholar

Huang Y., Niu J., (2016). Optimal building envelope design based on simulated performance: history, current status and new potentials. Energy Build, 117, 387–398. Huang Y. Niu J. 2016 Optimal building envelope design based on simulated performance: history, current status and new potentials Energy Build 117 387 398 10.1016/j.enbuild.2015.09.025 Search in Google Scholar

Ouarghi R., Krarti M., (2006). Building shape optimization using neural network and genetic algorithm approach. ASHRAE Trans, 112(PART 1), 484–491. Ouarghi R. Krarti M. 2006 Building shape optimization using neural network and genetic algorithm approach ASHRAE Trans 112 (PART 1) 484 491 Search in Google Scholar

Zemella G., De March D., Borrotti M., Poli I., (2011). Optimised design of energy efficient building façades via evolutionary neural networks. Energy Build, 43, 3297–3302. Zemella G. De March D. Borrotti M. Poli I. 2011 Optimised design of energy efficient building façades via evolutionary neural networks Energy Build 43 3297 3302 10.1016/j.enbuild.2011.10.006 Search in Google Scholar

Wang W., Zmeureanu R., Rivard H., (2005). Applying multi-objective genetic algorithms in green building design optimization. Build Environ, 40, 1512–1525, 10.1016/j.buildenv.2004.11.017 Wang W. Zmeureanu R. Rivard H. 2005 Applying multi-objective genetic algorithms in green building design optimization Build Environ 40 1512 1525 10.1016/j.buildenv.2004.11.017 Open DOISearch in Google Scholar

Hayter SJ., Kandt A., (2011). Renewable energy applications for existing buildings – preprint. Proceedings of the 48th AiCARR international conference; 1–15. Hayter SJ. Kandt A. 2011 Renewable energy applications for existing buildings – preprint Proceedings of the 48th AiCARR international conference 1 15 Search in Google Scholar

Kisilewicz T., Dudzińska A., (2015). Summer overheating of a passive sports hall building. Archives of Civil and Mechanical Engineering, 15(4), 1193–1201. ISSN 1644-9665. Kisilewicz T. Dudzińska A. 2015 Summer overheating of a passive sports hall building Archives of Civil and Mechanical Engineering 15 4 1193 1201 ISSN 1644-9665 10.1016/j.acme.2015.03.002 Search in Google Scholar

Mlakar J., Štrancar J., (2011). Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy and Buildings, 43(6), Pages 1443–1451. ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2011.02.008. Mlakar J. Štrancar J. 2011 Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations Energy and Buildings 43 6 1443 1451 ISSN 0378-7788. https://doi.org/10.1016/j.enbuild.2011.02.008 10.1016/j.enbuild.2011.02.008 Search in Google Scholar

Massman W.J., (1998). A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO and NO2, in air, O2 and N2 near STP. Atmospheric Environment, 32(6), 1111–1127. Massman W.J. 1998 A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO and NO2, in air, O2 and N2 near STP Atmospheric Environment 32 6 1111 1127 10.1016/S1352-2310(97)00391-9 Search in Google Scholar

Hugentobler W., (2016). Health Aspects in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel, 143–153. Hugentobler W. 2016 Health Aspects in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Eberle Dietmar Archer Florian Basel 143 153 10.1515/9783035603873-012 Search in Google Scholar

Leskovar V.Ž. , Premrov M., (2011). An approach in architectural design of energy-efficient timber buildings with a focus on the optimal glazing size in the south-oriented façade. Energy Build, 43, 3410–3418. Leskovar V.Ž. Premrov M. 2011 An approach in architectural design of energy-efficient timber buildings with a focus on the optimal glazing size in the south-oriented façade Energy Build 43 3410 3418 10.1016/j.enbuild.2011.09.003 Search in Google Scholar

Aicher F., (2016). Material, Type, Site in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel, 131–142. Aicher F. 2016 Material, Type, Site in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Eberle Dietmar Archer Florian Basel 131 142 10.1515/9783035603873-011 Search in Google Scholar

Steiner D., (2016). Back to Architecture in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel, 35–43. Steiner D. 2016 Back to Architecture in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Eberle Dietmar Archer Florian Basel 35 43 10.1515/9783035603873-005 Search in Google Scholar

Feireiss K., (2016). A Personal Approach in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel, 25–33. Feireiss K. 2016 A Personal Approach in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Eberle Dietmar Archer Florian Basel 25 33 10.1515/9783035603873-004 Search in Google Scholar

Till J., Schneider T., (2005). Flexible housing: The means to the end. Architectural Research Quarterly, 9(3–4), 287–296. doi:10.1017/S1359135505000345 Till J. Schneider T. 2005 Flexible housing: The means to the end Architectural Research Quarterly 9 3–4 287 296 doi:10.1017/S1359135505000345 Open DOISearch in Google Scholar

Schneider T., Till J., (2005). Flexible housing: Opportunities and limits. Architectural Research Quarterly, 9(2), 157–166. doi:10.1017/S1359135505000199 Schneider T. Till J. 2005 Flexible housing: Opportunities and limits Architectural Research Quarterly 9 2 157 166 doi:10.1017/S1359135505000199 Open DOISearch in Google Scholar

Aicher F., Eberle D., (2016). In Defence of the User in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Dietmar Eberle and Florian Archer Basel, 163–178. Aicher F. Eberle D. 2016 In Defence of the User in be 2226 The Temperature of Architecture Portrait of an Energy-Optimized House Edited by Eberle Dietmar Archer Florian Basel 163 178 10.1515/9783035603873-014 Search in Google Scholar

eISSN:
2720-6947
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings