Open Access

Current knowledge about cardiomyocytes maturation and endogenous myocardial regeneration. Background to apply this potential in humans with end-stage heart failure


Cite

Rota M, Leri A, Anversa P. Human heart failure: is cell therapy a valid option? Biochem Pharmacol. 2014;88(2):129–38; DOI:10.1016/j.bcp.2013.10.031. RotaM LeriA AnversaP Human heart failure: is cell therapy a valid option? Biochem Pharmacol 2014 88 2 129 38 10.1016/j.bcp.2013.10.031 Open DOISearch in Google Scholar

Zietkiewicz M, Perek B, Meyns B, Mesotten L, Dispersyn G, Nishimura Y, Flameng W. Chronic heart failure model induced by coronary embolization in sheep. Int J Artif Organs. 1999;22(7):499–504. ZietkiewiczM PerekB MeynsB MesottenL DispersynG NishimuraY FlamengW Chronic heart failure model induced by coronary embolization in sheep Int J Artif Organs 1999 22 7 499 504 10.1177/039139889902200708 Search in Google Scholar

Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35; DOI:10.1038/nature10147. LaflammeMA MurryCE Heart regeneration Nature 2011 473 7347 326 35 10.1038/nature10147 Open DOISearch in Google Scholar

Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104; DOI:10.1016/j.immuni.2013.11.019. EpelmanS LavineKJ BeaudinAE SojkaDK CarreroJA CalderonB BrijaT GautierEL IvanovS SatpathyAT SchillingJD SchwendenerR SerginI RazaniB ForsbergEC YokoyamaWM UnanueER ColonnaM RandolphGJ MannDL Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation Immunity 2014 40 1 91 104 10.1016/j.immuni.2013.11.019 Open DOISearch in Google Scholar

Fuchs M, Schibilsky D, Zeh W, Berchtold-Herz M, Beyersdorf F and Siepe M. Does the heart transplant have a future? Eur J Cardiothorac Surg. 2019;55(Suppl 1): i38–48; DOI:10.1093/ejcts/ezz107. FuchsM SchibilskyD ZehW Berchtold-HerzM BeyersdorfF SiepeM Does the heart transplant have a future? Eur J Cardiothorac Surg 2019 55 Suppl 1 i38 48 10.1093/ejcts/ezz107 Open DOISearch in Google Scholar

Sajgalik P, Grupper A, Edwards BS, Kushwaha SS, Stulak JM, Joyce DL, Joyce LD, Daly RC, Kara T, Schirger JA. Current status of left ventricular assist device therapy. Mayo Clin Proc. 2016;91(7):927–40; DOI:10.1016/j.mayocp.2016.05.002. SajgalikP GrupperA EdwardsBS KushwahaSS StulakJM JoyceDL JoyceLD DalyRC KaraT SchirgerJA Current status of left ventricular assist device therapy Mayo Clin Proc 2016 91 7 927 40 10.1016/j.mayocp.2016.05.002 Open DOISearch in Google Scholar

Breckwoldt K, Weinberger F, Eschenhagen T. Heart regeneration. Biochim Biophys Acta. 2016;1863(7 Pt B):1749–59; DOI:10.1016/j.bbamcr.2015.11.010. BreckwoldtK WeinbergerF EschenhagenT Heart regeneration Biochim Biophys Acta 2016 1863 7 Pt B 1749 59 10.1016/j.bbamcr.2015.11.010 Open DOISearch in Google Scholar

Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, Nadal-Ginard B, Torella D, and Ellison. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J. 35(39):2722–31; DOI:10.1093/eurheartj/ehs338. WaringCD VicinanzaC PapalamprouA SmithAJ PurushothamanS GoldspinkDF Nadal-GinardB TorellaD Ellison The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation Eur Heart J 35 39 2722 31 10.1093/eurheartj/ehs338 Open DOISearch in Google Scholar

Li SC, Wang L, Jiang H, Acevedo J, Chang AC, Loudon WG. Stem cell engineering for treatment of heart diseases: potentials and challenges. Cell Biol Int. 2009;33:255–67; DOI:10.1016/j.cellbi.2008.11.009. LiSC WangL JiangH AcevedoJ ChangAC LoudonWG Stem cell engineering for treatment of heart diseases: potentials and challenges Cell Biol Int 2009 33 255 67 10.1016/j.cellbi.2008.11.009 Open DOISearch in Google Scholar

Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95(4):1189–204; DOI:10.1152/physrev.00021.2014. ZhangY MignoneJ MacLellanWR Cardiac regeneration and stem cells Physiol Rev 2015 95 4 1189 204 10.1152/physrev.00021.2014 Open DOISearch in Google Scholar

Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013;14(8):529–41; DOI:10.1038/nrm3619. XinM OlsonEN Bassel-DubyR Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair Nat Rev Mol Cell Biol 2013 14 8 529 41 10.1038/nrm3619 Open DOISearch in Google Scholar

Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res. 2016;118(2):216–21; DOI:10.1161/CIRCRESAHA.115.307017. HaubnerBJ SchneiderJ SchweigmannU SchuetzT DichtlW Velik-SalchnerC SteinJI PenningerJM Functional recovery of a human neonatal heart after severe myocardial infarction Circ Res 2016 118 2 216 21 10.1161/CIRCRESAHA.115.307017 Open DOISearch in Google Scholar

Deutsch MA, Cleuziou J, Noebauer C, Eicken A, Vogt M, Hoerer J, Lange R, Schreiber C. Successful management of neonatal myocardial infarction with ECMO and intracoronary r-tPA lysis. Congenit Heart Dis. 2014;9(5):E169–74; DOI:10.1111/chd.12117. DeutschMA CleuziouJ NoebauerC EickenA VogtM HoererJ LangeR SchreiberC Successful management of neonatal myocardial infarction with ECMO and intracoronary r-tPA lysis Congenit Heart Dis 2014 9 5 E169 74 10.1111/chd.12117 Open DOISearch in Google Scholar

Bakhtiary F, Mohr FW, Kostelka M. Midterm outcome after surgical correction of anomalous left coronary artery from pulmonary artery. World J Pediatr Congenit Heart Surg. 2011;2(4):550–3; DOI:10.1177/2150135111413615. BakhtiaryF MohrFW KostelkaM Midterm outcome after surgical correction of anomalous left coronary artery from pulmonary artery World J Pediatr Congenit Heart Surg 2011 2 4 550 3 10.1177/2150135111413615 Open DOISearch in Google Scholar

Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271(1 Pt 1):C235–41; DOI:10.1152/ajpcell.1996.271.1.C235. SoonpaaMH KimKK PajakL FranklinM FieldLJ Cardiomyocyte DNA synthesis and binucleation during murine development Am J Physiol 1996 271 1 Pt 1 C235 41 10.1152/ajpcell.1996.271.1.C235 Open DOISearch in Google Scholar

Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kühn B. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA. 2013;110(4):1446–51; DOI:10.1073/pnas.1214608110. MollovaM BersellK WalshS SavlaJ DasLT ParkSY SilbersteinLE Dos RemediosCG GrahamD ColanS KühnB Cardiomyocyte proliferation contributes to heart growth in young humans Proc Natl Acad Sci USA 2013 110 4 1446 51 10.1073/pnas.1214608110 Open DOISearch in Google Scholar

Guo Y, Pu WT. Cardiomyocyte maturation: new phase in development. Circ Res. 2020;126:1086–106(8); DOI:10.1161/CIRCRESAHA.119.315862. GuoY PuWT Cardiomyocyte maturation: new phase in development Circ Res 2020 126 1086 106 8 10.1161/CIRCRESAHA.119.315862 Open DOISearch in Google Scholar

Guo Y, Cao Y, Jardin BD, Sethi I, Ma Q, Moghadaszadeh B, Troiano EC, Mazumdar N, Trembley MA, Small EM, Yuan GC, Beggs AH, Pu WT. Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling. Proc Natl Acad Sci USA. 2021;118(2):e2008861118; DOI:10.1073/pnas.2008861118. GuoY CaoY JardinBD SethiI MaQ MoghadaszadehB TroianoEC MazumdarN TrembleyMA SmallEM YuanGC BeggsAH PuWT Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling Proc Natl Acad Sci USA 2021 118 2 e2008861118 10.1073/pnas.2008861118 Open DOISearch in Google Scholar

Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Ma Q, Guatimosim S, Hu Y, Varuzhanyan G, VanDusen NJ, Zhang D, Chan DC, Yuan GC, Seidman CE, Seidman JG, Pu WT. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun. 2018;9(1):3837; DOI:10.1038/s41467-018-06347-2. GuoY JardinBD ZhouP SethiI AkerbergBN ToepferCN AiY LiY MaQ GuatimosimS HuY VaruzhanyanG VanDusenNJ ZhangD ChanDC YuanGC SeidmanCE SeidmanJG PuWT Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor Nat Commun 2018 9 1 3837 10.1038/s41467-018-06347-2 Open DOISearch in Google Scholar

Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2021;12(1):177; DOI:10.1186/s13287-021-02252-6. GarbernJC LeeRT Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes Stem Cell Res Ther 2021 12 1 177 10.1186/s13287-021-02252-6 Open DOISearch in Google Scholar

Dorn GW, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015;29(19):1981–91; DOI:10.1101/gad.269894.115. DornGW VegaRB KellyDP Mitochondrial biogenesis and dynamics in the developing and diseased heart Genes Dev 2015 29 19 1981 91 10.1101/gad.269894.115 Open DOISearch in Google Scholar

Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling. Circ Res. 2018;123:107–28; DOI:10.1161/CIRCRESAHA.118.312017. GibbAA HillBG Metabolic coordination of physiological and pathological cardiac remodeling Circ Res 2018 123 107 28 10.1161/CIRCRESAHA.118.312017 Open DOISearch in Google Scholar

Hines MH. Neonatal cardiovascular physiology. Semin Pediatr Surg. 2013;22(4):174–8; DOI:10.1053/j.sempedsurg.2013.10.004. HinesMH Neonatal cardiovascular physiology Semin Pediatr Surg 2013 22 4 174 8 10.1053/j.sempedsurg.2013.10.004 Open DOISearch in Google Scholar

Taber LA. Biomechanics of cardiovascular development. Annu Rev Biomed Eng. 2001;3:1–25; DOI:10.1146/annurev.bioeng.3.1.1. TaberLA Biomechanics of cardiovascular development Annu Rev Biomed Eng 2001 3 1 25 10.1146/annurev.bioeng.3.1.1 Open DOISearch in Google Scholar

Fukuda R, Gunawan F, Ramadass R, Beisaw A, Konzer A, Mullapudi ST, Gentile A, Maischein MH, Graumann J, Stainier DYR. Mechanical forces regulate cardiomyocyte myofilament maturation via the VCL-SSH1-CFL axis. Dev Cell. 2019;51(1):62–77.e5; DOI:10.1016/j.devcel.2019.08.006. FukudaR GunawanF RamadassR BeisawA KonzerA MullapudiST GentileA MaischeinMH GraumannJ StainierDYR Mechanical forces regulate cardiomyocyte myofilament maturation via the VCL-SSH1-CFL axis Dev Cell 2019 51 1 62 77.e5 10.1016/j.devcel.2019.08.006 Open DOISearch in Google Scholar

Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac regeneration: Lessons from development. Circ Res. 2017;120(6):941–59. DOI:10.1161/CIRCRESAHA.116.309040. GaldosFX GuoY PaigeSL VanDusenNJ WuSM PuWT Cardiac regeneration: Lessons from development Circ Res 2017 120 6 941 59 10.1161/CIRCRESAHA.116.309040 Open DOISearch in Google Scholar

Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res. 2021;117(3):712–6; DOI: 10.1093/cvr/cvaa159. MaroliG BraunT The long and winding road of cardiomyocyte maturation Cardiovasc Res 2021 117 3 712 6 10.1093/cvr/cvaa159 Open DOISearch in Google Scholar

Quaife-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafehi H, Ramialison M, El-Osta A, Hudson JE, Porrello ER. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation. 2017;136(12):1123–39; DOI:10.1161/CIRCULATIONAHA.117.028252. Quaife-RyanGA SimCB ZiemannM KaspiA RafehiH RamialisonM El-OstaA HudsonJE PorrelloER Multicellular transcriptional analysis of mammalian heart regeneration Circulation 2017 136 12 1123 39 10.1161/CIRCULATIONAHA.117.028252 Open DOISearch in Google Scholar

Bray MA, Sheehy SP, Parker KK. Sarcomere alignment is regulated by myocyte shape. Cell Motil Cytoskeleton. 2008;65(8):641–51. DOI:10.1002/cm.20290. BrayMA SheehySP ParkerKK Sarcomere alignment is regulated by myocyte shape Cell Motil Cytoskeleton 2008 65 8 641 51 10.1002/cm.20290 Open DOISearch in Google Scholar

Locatelli P, Belaich MN, López AE, Olea FD, Uranga Vega M, Giménez CS, Simonin JA, Bauzá MDR, Castillo MG, Cuniberti LA, Crottogini A, Cerrudo CS, Ghiringhelli PD. Novel insights into cardiac regeneration based on differential fetal and adult ovine heart transcriptomic analysis. Am J Physiol Heart Circ Physiol. 2020;318(4):H994–1007; DOI:10.1152/ajpheart.00610.2019. LocatelliP BelaichMN LópezAE OleaFD Uranga VegaM GiménezCS SimoninJA BauzáMDR CastilloMG CunibertiLA CrottoginiA CerrudoCS GhiringhelliPD Novel insights into cardiac regeneration based on differential fetal and adult ovine heart transcriptomic analysis Am J Physiol Heart Circ Physiol 2020 318 4 H994 1007 10.1152/ajpheart.00610.2019 Open DOISearch in Google Scholar

Weiss A, and Leinwand LA. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol. 1996;12:417–39; DOI:10.1146/annurev.cellbio.12.1.417. WeissA LeinwandLA The mammalian myosin heavy chain gene family Annu Rev Cell Dev Biol 1996 12 417 39 10.1146/annurev.cellbio.12.1.417 Open DOISearch in Google Scholar

Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102; DOI:10.1126/science.1164680. BergmannO BhardwajRD BernardS ZdunekS Barnabé-HeiderF WalshS ZupicichJ AlkassK BuchholzBA DruidH JovingeS FrisénJ Evidence for cardiomyocyte renewal in humans Science 2009 324 5923 98 102 10.1126/science.1164680 Open DOISearch in Google Scholar

Jiang Y, Park P, Hong SM, Ban K. Maturation of cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations. Mol Cells. 2018;41(7):613–21; DOI:10.14348/molcells.2018.0143. JiangY ParkP HongSM BanK Maturation of cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations Mol Cells 2018 41 7 613 21 10.14348/molcells.2018.0143 Open DOISearch in Google Scholar

Yang X, Pabon L, Murry CE. Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res. 2014;114(3):511–23; DOI:10.1161/CIRCRESAHA.114.300558. YangX PabonL MurryCE Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes Circ Res 2014 114 3 511 23 10.1161/CIRCRESAHA.114.300558 Open DOISearch in Google Scholar

Kreipke RE, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodelling in early development and cardiomyocyte maturation. Semin Cell Dev Biol. 2016;52:84–92; DOI:10.1016/j.semcdb.2016.02.004. KreipkeRE WangY MiklasJW MathieuJ Ruohola-BakerH Metabolic remodelling in early development and cardiomyocyte maturation Semin Cell Dev Biol 2016 52 84 92 10.1016/j.semcdb.2016.02.004 Open DOISearch in Google Scholar

Seok H, Oh JH. Hypertrophic cardiomyopathy in infants from the perspective of cardiomyocyte maturation. Korean Circ J. 2021;51(9):733–51; DOI:10.4070/kcj.2021.0153. SeokH OhJH Hypertrophic cardiomyopathy in infants from the perspective of cardiomyocyte maturation Korean Circ J 2021 51 9 733 51 10.4070/kcj.2021.0153 Open DOISearch in Google Scholar

Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA. The oxyden-rich postnatal environment induces cardiomyocyte cell-cyle arrest through DNA damage responses. Cell 2014;157(3):565–79; DOI:10.1016/j.cell.2014.03.032. PuenteBN KimuraW MuralidharSA MoonJ AmatrudaJF PhelpsKL GrinsfelderD RothermelBA ChenR GarciaJA SantosCX ThetS MoriE KinterMT RindlerPM ZacchignaS MukherjeeS ChenDJ MahmoudAI GiaccaM RabinovitchPS AroumougameA ShahAM SzwedaLI SadekHA The oxyden-rich postnatal environment induces cardiomyocyte cell-cyle arrest through DNA damage responses Cell 2014 157 3 565 79 10.1016/j.cell.2014.03.032 Open DOISearch in Google Scholar

O’Tierney PF, Anderson DF, Faber JJ, Louey S, Thornburg KL, Giraud GD. Reduced systolic pressure load decreases cell-cycle activity in the fetal sheep heart. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R573–8; DOI:10.1152/ajpregu.00754.2009. O’TierneyPF AndersonDF FaberJJ LoueyS ThornburgKL GiraudGD Reduced systolic pressure load decreases cell-cycle activity in the fetal sheep heart Am J Physiol Regul Integr Comp Physiol 2010 299 2 R573 8 10.1152/ajpregu.00754.2009 Open DOISearch in Google Scholar

Stout K. Pregnancy in women with congenital heart disease: The importance of evaluation and counselling. Heart. 2005;91(6):713–4; DOI:10.1136/hrt.2004.047886. StoutK Pregnancy in women with congenital heart disease: The importance of evaluation and counselling Heart 2005 91 6 713 4 10.1136/hrt.2004.047886 Open DOISearch in Google Scholar

Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andrä M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisén J. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75; DOI:10.1016/j.cell.2015.05.026. BergmannO ZdunekS FelkerA SalehpourM AlkassK BernardS SjostromSL SzewczykowskaM JackowskaT Dos RemediosC MalmT AndräM JashariR NyengaardJR PossnertG JovingeS DruidH FrisénJ Dynamics of cell generation and turnover in the human heart Cell 2015 161 7 1566 75 10.1016/j.cell.2015.05.026 Open DOISearch in Google Scholar

Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–6; DOI:10.1038/nature11682. SenyoSE SteinhauserML PizzimentiCL YangVK CaiL WangM WuTD Guerquin-KernJL LecheneCP LeeRT Mammalian heart renewal by pre-existing cardiomyocytes Nature 2013 493 7432 433 6 10.1038/nature11682 Open DOISearch in Google Scholar

Walsh S, Ponten A, Fleischmann BF, Jovinge S. Cardiomyocyte cell cycle control and growth estimation in vivo-an analysis based on cardiomyocyte nuclei. Cardiovasc Res. 2010;86(3):365–73; DOI:10.1093/cvr/cvq005. WalshS PontenA FleischmannBF JovingeS Cardiomyocyte cell cycle control and growth estimation in vivo-an analysis based on cardiomyocyte nuclei Cardiovasc Res 2010 86 3 365 73 10.1093/cvr/cvq005 Open DOISearch in Google Scholar

Hosoda T, Rota M, Kajstura J, Leri A, Anversa P. Role of stem cells in cardiovascular biology. J Thromb Haemost. 2011;9(Suppl 1):151–61; DOI:10.1111/j.1538-7836.2011.04363.x. HosodaT RotaM KajsturaJ LeriA AnversaP Role of stem cells in cardiovascular biology J Thromb Haemost 2011 9 Suppl 1 151 61 10.1111/j.1538-7836.2011.04363.x Open DOISearch in Google Scholar

Malliaras K, Ibrahim A, Tseliou E, Liu W, Sun B, Middleton RC, Seinfeld J, Wang L, Sharifi BG, Marbán E. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Mol Med. 2014;6(6):760–77; DOI:10.1002/emmm.201303626. MalliarasK IbrahimA TseliouE LiuW SunB MiddletonRC SeinfeldJ WangL SharifiBG MarbánE Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction EMBO Mol Med 2014 6 6 760 77 10.1002/emmm.201303626 Open DOISearch in Google Scholar

Zhang Y, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marbán E. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One. 2010;5(9):e12559: DOI:10.1371/journal.pone.0012559. ZhangY LiTS LeeST WawrowskyKA ChengK GalangG MalliarasK AbrahamMR WangC MarbánE Dedifferentiation and proliferation of mammalian cardiomyocytes PLoS One 2010 5 9 e12559 10.1371/journal.pone.0012559 Open DOISearch in Google Scholar

Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138:257–70; DOI:10.1016/j.cell.2009.04.060. BersellK ArabS HaringB KühnB Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury Cell 2009 138 257 70 10.1016/j.cell.2009.04.060 Open DOISearch in Google Scholar

Malliaras K, Zhang Z, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marban E. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5(2):191–09; DOI:10.1002/emmm.201201737. MalliarasK ZhangZ SeinfeldJ GalangG TseliouE ChengK SunB AminzadehM MarbanE Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart EMBO Mol Med 2013 5 2 191 09 10.1002/emmm.201201737 Open DOISearch in Google Scholar

Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA. 2003;100(18):10440–5; DOI:10.1073/pnas.1832855100. UrbanekK QuainiF TascaG TorellaD CastaldoC Nadal-GinardB LeriA KajsturaJ QuainiE AnversaP Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy Proc Natl Acad Sci USA 2003 100 18 10440 5 10.1073/pnas.1832855100 Open DOISearch in Google Scholar

van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, Middleton RC, Marbán E, Molkentin JE. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41; DOI:10.1038/nature13309. van BerloJH KanisicakO MailletM VagnozziRJ KarchJ LinSC MiddletonRC MarbánE MolkentinJE c-kit+ cells minimally contribute cardiomyocytes to the heart Nature 2014 509 7500 337 41 10.1038/nature13309 Open DOISearch in Google Scholar

Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stren HC. Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg. 2011;92(5):1761–5; DOI:10.1016/j.athoracsur.2011.06.021. FratzS HagerA SchreiberC SchwaigerM HessJ StrenHC Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery Ann Thorac Surg 2011 92 5 1761 5 10.1016/j.athoracsur.2011.06.021 Open DOISearch in Google Scholar

Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem. 2011;286(10):8644–54; DOI:10.1074/jbc.M110.184549 Di StefanoV GiaccaM CapogrossiMC CrescenziM MartelliF Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle J Biol Chem 2011 286 10 8644 54 10.1074/jbc.M110.184549 Open DOISearch in Google Scholar

Tane S, Ikenishi A, Okayama H, Iwamoto N, Nakayama KI, Takeuchi T. CKD inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes. Bioche. Biophys Res Commun. 2014;443(3):1105–9; DOI:10.1016/j.bbrc.2013.12.109. TaneS IkenishiA OkayamaH IwamotoN NakayamaKI TakeuchiT CKD inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes Bioche. Biophys Res Commun 2014 443 3 1105 9 10.1016/j.bbrc.2013.12.109 Open DOISearch in Google Scholar

Mohamad TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava G. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 2018;173(1):104–16 e12; DOI:10.1016/j.cell.2018.02.014. MohamadTMA AngYS RadzinskyE ZhouP HuangY ElfenbeinA FoleyA MagnitskyS SrivastavaG Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration Cell 2018 173 1 104 16 e12 10.1016/j.cell.2018.02.014 Open DOISearch in Google Scholar

Singh BN, Koyano-Nakagawa N, Gong W, Moskowitz IP, Weaver CV, Braunlin E, Das S, van Berlo JH, Garry MG, Garry DJ. A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nat Commun. 2018;9(1):4237; DOI:10.1038/s41467-018-06617-z. SinghBN Koyano-NakagawaN GongW MoskowitzIP WeaverCV BraunlinE DasS van BerloJH GarryMG GarryDJ A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human Nat Commun 2018 9 1 4237 10.1038/s41467-018-06617-z Open DOISearch in Google Scholar

Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, Segura A, Willerson JT, Martin JF. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature. 2017;550(7675):260–4; DOI:10.1038/nature24045. LeachJP HeallenT ZhangM RahmaniM MorikawaY HillMC SeguraA WillersonJT MartinJF Hippo pathway deficiency reverses systolic heart failure after infarction Nature 2017 550 7675 260 4 10.1038/nature24045 Open DOISearch in Google Scholar

Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA. Meis 1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013;497(7448):249–53; DOI:10.1038/nature12054. MahmoudAI KocabasF MuralidharSA KimuraW KouraAS ThetS PorrelloER SadekHA Meis 1 regulates postnatal cardiomyocyte cell cycle arrest Nature 2013 497 7448 249 53 10.1038/nature12054 Open DOISearch in Google Scholar

Attwooll C, Lazzerini Denchi E, Hellin K. The E2F family: specific functions and overlapping interests. EMBO J. 2004;23(24):4709–16; DOI:10.1038/sj.emboj.7600481. AttwoollC Lazzerini DenchiE HellinK The E2F family: specific functions and overlapping interests EMBO J 2004 23 24 4709 16 10.1038/sj.emboj.7600481 Open DOISearch in Google Scholar

Bachhawat AK, Yadav S, Jainarayanan AK, Dubey P. Heart failure and the glutathione cycle: an integrated view. Biochem J. 2020;477(17):3123–30; DOI:10.1042/BCJ20200429. BachhawatAK YadavS JainarayananAK DubeyP Heart failure and the glutathione cycle: an integrated view Biochem J 2020 477 17 3123 30 10.1042/BCJ20200429 Open DOISearch in Google Scholar

Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA. Hypoxia induces heart regeneration in adult mice. Nature. 2017;541(7636):222–7; DOI:10.1038/nature20173. NakadaY CansecoDC ThetS AbdisalaamS AsaithambyA SantosCX ShahAM ZhangH FaberJE KinterMT SzwedaLI XingC HuZ DeberardinisRJ SchiattarellaG HillJA OzO LuZ ZhangCC KimuraW SadekHA Hypoxia induces heart regeneration in adult mice Nature 2017 541 7636 222 7 10.1038/nature20173 Open DOISearch in Google Scholar

Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inibitor therapy induces cardiomyocyte mitosis, reduces scarringm and rescues function after myocardial infarction. Proc Natl Acad Sci USA. 2006;103(42):15546–51; DOI:10.1073/pnas.0607382103. EngelFB HsiehPC LeeRT KeatingMT FGF1/p38 MAP kinase inibitor therapy induces cardiomyocyte mitosis, reduces scarringm and rescues function after myocardial infarction Proc Natl Acad Sci USA 2006 103 42 15546 51 10.1073/pnas.0607382103 Open DOISearch in Google Scholar

Koudstaal S, Bastings MM, Feyen DA, Waring CD, van Slochteren FJ, Dankers PY, Torella D, Sluijter JP, Nadal-Ginard B, Doevendans PA, Ellison GM, Chamuleau SA. Sustain delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res. 2014;7(2):232–41; DOI:10.1007/s12265-013-9518-4. KoudstaalS BastingsMM FeyenDA WaringCD van SlochterenFJ DankersPY TorellaD SluijterJP Nadal-GinardB DoevendansPA EllisonGM ChamuleauSA Sustain delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart J Cardiovasc Transl Res 2014 7 2 232 41 10.1007/s12265-013-9518-4 Open DOISearch in Google Scholar

Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, Walsh K. Follistin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283(47):32802–11; DOI:10.1074/jbc.M803440200. OuchiN OshimaY OhashiK HiguchiA IkegamiC IzumiyaY WalshK Follistin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism J Biol Chem 2008 283 47 32802 11 10.1074/jbc.M803440200 Open DOISearch in Google Scholar

O’Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Cir. Res. 2015;116(5):804–15; DOI:10.1161/CIRCRESAHA.116.304269. O’MearaCC WamstadJA GladstoneRA FomovskyGM ButtyVL ShrikumarA GannonJB BoyerLA LeeRT Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration Cir. Res 2015 116 5 804 15 10.1161/CIRCRESAHA.116.304269 Open DOISearch in Google Scholar

Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, Zhu W, Fajardo G, Noseda M, Nakamura K, Tian X, Liu Q, Wang A, Matsuura Y, Bushway P, Cai W, Savchenko A, Mahmoudi M, Schneider MD, van den Hoff MJ, Butte MJ, Yang PC, Walsh K, Zhou B, Bernstein D, Mercola M, Ruiz-Lozano P. Epicardial FSTL1 reconstruction regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85; DOI:10.1038/nature15372. WeiK SerpooshanV HurtadoC Diez-CunadoM ZhaoM MaruyamaS ZhuW FajardoG NosedaM NakamuraK TianX LiuQ WangA MatsuuraY BushwayP CaiW SavchenkoA MahmoudiM SchneiderMD van den HoffMJ ButteMJ YangPC WalshK ZhouB BernsteinD MercolaM Ruiz-LozanoP Epicardial FSTL1 reconstruction regenerates the adult mammalian heart Nature 2015 525 7570 479 85 10.1038/nature15372 Open DOISearch in Google Scholar

van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11(11):860–72; DOI:10.1038/nrd3864. van RooijE OlsonEN MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles Nat Rev Drug Discov 2012 11 11 860 72 10.1038/nrd3864 Open DOISearch in Google Scholar

Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Bostrom P, Che L, Zhang C, Spiegelman BM, Rosenzwieg A. miR-222 is necessary for exercise-induced cardiac growth annd protects againts pathological cardiac remodeling. Cell Metab. 2005;21(4):584–98; DOI:10.1016/j.cmet.2015.02.014. LiuX XiaoJ ZhuH WeiX PlattC DamilanoF XiaoC BezzeridesV BostromP CheL ZhangC SpiegelmanBM RosenzwiegA miR-222 is necessary for exercise-induced cardiac growth annd protects againts pathological cardiac remodeling Cell Metab 2005 21 4 584 98 10.1016/j.cmet.2015.02.014 Open DOISearch in Google Scholar

García-Fernández RA, García-Palencia P, Sánchez MA, Gil-Gómez G, Sánchez B, Rollán E, Martín-Caballero J, Flores JM. Combined loss of p21(waf1/cip1) and p27(kip1) enhances tumorigenesis in mice. Lab. Invest. 2011;91(11):1634–42; DOI:10.1038/labinvest.2011.133. García-FernándezRA García-PalenciaP SánchezMA Gil-GómezG SánchezB RollánE Martín-CaballeroJ FloresJM Combined loss of p21(waf1/cip1) and p27(kip1) enhances tumorigenesis in mice Lab. Invest 2011 91 11 1634 42 10.1038/labinvest.2011.133 Open DOISearch in Google Scholar

Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandonà L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569(7756):418–22; DOI:10.1038/s41586-019-1191-6. GabisoniaK ProsdocimoG AquaroGD CarlucciL ZentilinL SeccoI AliH BragaL GorgodzeN BerniniF BurchielliS CollesiC ZandonàL SinagraG PiacentiM ZacchignaS BussaniR RecchiaFA GiaccaM MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs Nature 2019 569 7756 418 22 10.1038/s41586-019-1191-6 Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry