Open Access

Study of the expression of genes associated with post-translational changes in histones in the internal thoracic artery and the saphenous vein grafts used in coronary artery bypass grafting procedure


Cite

Davierwala PM, Mohr FW. Bilateral internal mammary artery grafting: Rationale and evidence. Int J Surg. 2015;16:133–9; DOI:10.1016/j. ijsu.2015.01.012.DavierwalaPMMohrFWBilateral internal mammary artery grafting: Rationale and evidenceInt J Surg201516133910.1016/j.ijsu.2015.01.01225612853Open DOISearch in Google Scholar

Malinska A, Podemska Z, Perek B, Jemielity M, Buczkowski P, Grzymislawska M, Sujka-Kordowska P, Nowicki M. Preoperative factors predicting saphenous vein graft occlusion in coronary artery bypass grafting: a multivariate analysis. Histochem Cell Biol. 2017;148:417–24; DOI:10.1007/s00418-017-1574-4.MalinskaAPodemskaZPerekBJemielityMBuczkowskiPGrzymislawskaMSujka-KordowskaPNowickiMPreoperative factors predicting saphenous vein graft occlusion in coronary artery bypass grafting: a multivariate analysisHistochem Cell Biol20171484172410.1007/s00418-017-1574-4560205128478589Open DOISearch in Google Scholar

Perek B, Malinska A, Misterski M, Ostalska-Nowicka D, Zabel M, Perek A, Nowicki M. Preexisting high expression of matrix metalloproteinase-2 in tunica media of saphenous vein conduits is associated with unfavorable long-term outcomes after coronary artery bypass grafting. Biomed Res Int. 2013;2013; DOI:10.1155/2013/730721.PerekBMalinskaAMisterskiMOstalska-NowickaDZabelMPerekANowickiMPreexisting high expression of matrix metalloproteinase-2 in tunica media of saphenous vein conduits is associated with unfavorable long-term outcomes after coronary artery bypass graftingBiomed Res Int2013201310.1155/2013/730721378755424151618Open DOISearch in Google Scholar

Al-Sabti HA, Al Kindi A, Al-Rasadi K, Banerjee Y, Al-Hashmi K, Al-Hinai A. Saphenous vein graft vs. radial artery graft searching for the best second coronary artery bypass graft. J Saudi Hear Assoc. 2013;25:247–54; DOI:10.1016/j.jsha.2013.06.001.Al-SabtiHAAlKindi AAl-RasadiKBanerjeeYAl-HashmiKAl-HinaiA.Saphenous vein graft vsradial artery graft searching for the best second coronary artery bypass graft. J Saudi Hear Assoc2013252475410.1016/j.jsha.2013.06.001381863224198449Open DOISearch in Google Scholar

Sabik JF, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg. 2005;79:544–51; DOI:10.1016/j. athoracsur.2004.07.047.SabikJFLytleBWBlackstoneEHHoughtalingPLCosgroveDMComparison of saphenous vein and internal thoracic artery graft patency by coronary systemAnn Thorac Surg2005795445110.1016/j.athoracsur.2004.07.04715680832Open DOISearch in Google Scholar

Nawrocki MJ, Perek B, Sujka-Kordowska P, Konwerska A, Kałużna S, Zawierucha P, Bruska M, Zabel M, Jemielity M, Nowicki M, Kempisty B, Malińska A. Differences in expression of genes involved in bone development and morphogenesis in the walls of internal thoracic artery and saphenous vein conduits may provide markers useful for evaluation graft patency. Int J Mol Sci. 2019;20; DOI:10.3390/ijms20194890.NawrockiMJPerekBSujka-KordowskaPKonwerskaAKałużnaSZawieruchaPBruskaMZabelMJemielityMNowickiMKempistyBMalińskaADifferences in expression of genes involved in bone development and morphogenesis in the walls of internal thoracic artery and saphenous vein conduits may provide markers useful for evaluation graft patencyInt J Mol Sci20192010.3390/ijms20194890680153331581653Open DOISearch in Google Scholar

Tinica G, Chistol R, Bulgaru Iliescu D, Furnica C. Long‑term graft patency after coronary artery bypass grafting: Effects of surgical technique. Exp Ther Med. 2018;17:359–67; DOI:10.3892/etm.2018.6929.TinicaGChistolRBulgaruIliescu DFurnicaC.Long‑term graft patency after coronary artery bypass grafting: Effects of surgical techniqueExp Ther Med2018173596710.3892/etm.2018.6929630737130651804Open DOISearch in Google Scholar

Martínez-González B, Reyes-Hernández CG, Quiroga-Garza A, Rodrígu-ez-Rodríguez VE, Esparza-Hernández CN, Elizondo-Omaña RE, Guzmán-López S. Conduits used in coronary artery bypass grafting: A review of morphological studies. Ann Thorac Cardiovasc Surg. 2017;23:55–65; DOI:10.5761/atcs.ra.16-00178.Martínez-GonzálezBReyes-HernándezCGQuiroga-GarzaARodrígu-ez-RodríguezVEEsparza-HernándezCNElizondo-OmañaREGuzmán-LópezS.Conduits used in coronary artery bypass grafting: A review of morphological studiesAnn Thorac Cardiovasc Surg201723556510.5761/atcs.ra.16-00178542263028202895Open DOISearch in Google Scholar

Perek B, Kowalska K, Kempisty B, Nowicki M, Dyszkiewicz-Konwińska M, Puślecki M, Ostalska-Nowicka D, Jemielity M, Jankowski M, Nawrocki MJ, Malińska A. Gender and age-related variability of macrophage representation in the internal thoracic artery wall: Does it matter? J Biol Regul Homeost Agents. 2018;32:791–802.PerekBKowalskaKKempistyBNowickiMDyszkiewicz-KonwińskaMPuśleckiMOstalska-NowickaDJemielityMJankowskiMNawrockiMJMalińskaAGender and age-related variability of macrophage representation in the internal thoracic artery wall: Does it matter?J Biol Regul Homeost Agents201832791802Search in Google Scholar

Bawany FI, Khan MS, Khan A, Nafey Kazi A, Naeem M. Using skeletonised grafts for coronary artery bypass grafting. J Pak Med Assoc. 2014;64:606–10.BawanyFIKhanMSKhanANafeyKazi ANaeemM.Using skeletonised grafts for coronary artery bypass graftingJ Pak Med Assoc20146460610Search in Google Scholar

Perek B, Malinska A, Stefaniak S, Ostalska-Nowicka D, Misterski M, Zabel M, Suri A, Nowicki M. Predictive Factors of Late Venous Aortocoronary Graft Failure: Ultrastructural Studies. PLoS One. 2013;8:e70628; DOI:10.1371/journal.pone.0070628.PerekBMalinskaAStefaniakSOstalska-NowickaDMisterskiMZabelMSuriANowickiMPredictive Factors of Late Venous Aortocoronary Graft Failure: Ultrastructural StudiesPLoS One20138e7062810.1371/journal.pone.0070628373423723940610Open DOISearch in Google Scholar

Sanders J, Hawe E, Brull DJ, Hubbart C, Lowe GDO, Rumley A, Humphries SE, Montgomery HE. Higher IL-6 levels but not IL6 −174G>C or −572G>C genotype are associated with post-operative complication following coronary artery bypass graft (CABG) surgery. Atherosclerosis. 2009;204:196–201; DOI:10.1016/j.atherosclerosis.2008.08.032.SandersJHaweEBrullDJHubbartCLoweGDORumleyAHumphriesSEMontgomeryHEHigher IL-6 levels but not IL6 −174G>C or −572G>C genotype are associated with post-operative complication following coronary artery bypass graft (CABG) surgeryAtherosclerosis200920419620110.1016/j.atherosclerosis.2008.08.03218922529Open DOISearch in Google Scholar

Margaritis M, Channon KM, Antoniades C. Statins and vein graft failure in coronary bypass surgery. Curr Opin Pharmacol. 2012;12:172–80; 10.1016/j.coph.2012.01.009MargaritisMChannonKMAntoniadesCStatins and vein graft failure in coronary bypass surgeryCurr Opin Pharmacol2012121728010.1016/j.coph.2012.01.009Open DOISearch in Google Scholar

Taggart DP, D’Amico R, Altman DG. Effect of arterial revascularisation on survival: A systematic review of studies comparing bilateral and single internal mammary arteries. Lancet. 2001;358:870–5; DOI:10.1016/ S0140-6736(01)06069-X.TaggartDPD’AmicoRAltmanDGEffect of arterial revascularisation on survival: A systematic review of studies comparing bilateral and single internal mammary arteriesLancet2001358870510.1016/S0140-6736(01)06069-XOpen DOISearch in Google Scholar

Samano N, Geijer H, Liden M, Fremes S, Bodin L, Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: A randomized trial. J Thorac Cardiovasc Surg. 2015;150:880–8; DOI:10.1016/j. jtcvs.2015.07.027.SamanoNGeijerHLidenMFremesSBodinLSouzaDThe no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: A randomized trialJ Thorac Cardiovasc Surg2015150880810.1016/j.jtcvs.2015.07.02726282605Open DOISearch in Google Scholar

Lee DY, Chiu JJ. Atherosclerosis and flow: Roles of epigenetic modulation in vascular endothelium. J Biomed Sci. 2019;26; DOI:10.1186/ s12929-019-0551-8.LeeDYChiuJJAtherosclerosis and flow: Roles of epigenetic modulation in vascular endotheliumJ Biomed Sci20192610.1186/s12929-019-0551-8668523731387590Open DOISearch in Google Scholar

Liang M, Cowley AW, Mattson DL, Kotchen TA, Liu Y. Epigenomics of Hypertension. Semin Nephrol. 2013;33:392–9; DOI:10.1016/j. semnephrol.2013.05.011.LiangMCowleyAWMattsonDLKotchenTALiuYEpigenomics of HypertensionSemin Nephrol201333392910.1016/j.semnephrol.2013.05.011377779924011581Open DOISearch in Google Scholar

Liu CF, Tang WHW. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic to Transl Sci. 2019;4:976–93; DOI:10.1016/j. jacbts.2019.05.011.LiuCFTangWHWEpigenetics in Cardiac Hypertrophy and Heart FailureJACC Basic to Transl Sci201949769310.1016/j.jacbts.2019.05.011693882331909304Open DOISearch in Google Scholar

Turgeon PJ, Sukumar AN, Marsden PA. Epigenetics of cardiovascular disease: A new “beat” in coronary artery disease. Med Epigenetics. 2014;2:37–52; DOI:10.1159/000360766.TurgeonPJSukumarANMarsdenPAEpigenetics of cardiovascular disease: A new “beat” in coronary artery diseaseMed Epigenetics20142375210.1159/000360766423295525408699Open DOISearch in Google Scholar

Wolffe AP, Matzke MA. Epigenetics: Regulation through repression. Science (80- ). 1999;286:481–6; DOI:10.1126/science.286.5439.481.WolffeAPMatzkeMAEpigenetics: Regulation through repressionScience (80- )1999286481610.1126/science.286.5439.48110521337Open DOISearch in Google Scholar

Nawrocki MJ, Strugała AJ, Piotrowski P, Wudarski M, Olesińska M, Jagodziński PP. mRNA-Expressionslevel von JHDM1D und HDAC1–3 in peripheren mononukleären Blutzellen von Patienten mit systemischem Lupus eythematodes. Z Rheumatol. 2015;74:902–10; DOI:10.1007/s00393-015-1619-9.NawrockiMJStrugałaAJPiotrowskiPWudarskiMOlesińskaMJagodzińskiPPmRNA-Expressionslevel von JHDM1D und HDAC1–3 in peripheren mononukleären Blutzellen von Patienten mit systemischem Lupus eythematodesZ Rheumatol2015749021010.1007/s00393-015-1619-926347123Open DOISearch in Google Scholar

Khyzha N, Alizada A, Wilson MD, Fish JE. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol Med. 2017;23:332–47; DOI:10.1016/j.molmed.2017.02.004.KhyzhaNAlizadaAWilsonMDFishJEEpigenetics of Atherosclerosis: Emerging Mechanisms and MethodsTrends Mol Med2017233324710.1016/j.molmed.2017.02.00428291707Open DOISearch in Google Scholar

Krause B, Sobrevia L, Casanello P. Epigenetics: New Concepts of Old Phenomena in Vascular Physiology. Curr Vasc Pharmacol. 2009;7:513–20; DOI:10.2174/157016109789043883.KrauseBSobreviaLCasanelloPEpigenetics: New Concepts of Old Phenomena in Vascular PhysiologyCurr Vasc Pharmacol200975132010.2174/157016109789043883Open DOISearch in Google Scholar

Li P, Ge J, Li H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol. 2020;17:96–115; DOI:10.1038/s41569-019-0235-9.LiPGeJLiHLysine acetyltransferases and lysine deacetylases as targets for cardiovascular diseaseNat Rev Cardiol2020179611510.1038/s41569-019-0235-9Open DOISearch in Google Scholar

Tsukada YI, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–6; DOI:10.1038/nature04433.TsukadaYIFangJErdjument-BromageHWarrenMEBorchersCHTempstPZhangYHistone demethylation by a family of JmjC domain-containing proteinsNature2006439811610.1038/nature04433Open DOISearch in Google Scholar

Fortschegger K, de Graaf P, Outchkourov NS, van Schaik FMA, Timmers HTM, Shiekhattar R. PHF8 Targets Histone Methylation and RNA Polymerase II To Activate Transcription. Mol Cell Biol. 2010;30:3286–98; DOI:10.1128/mcb.01520-09.FortscheggerKdeGraaf POutchkourovNSvanSchaik FMATimmersHTMShiekhattarR.PHF8 Targets Histone Methylation and RNA Polymerase II To Activate TranscriptionMol Cell Biol20103032869810.1128/mcb.01520-09Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Findeisen HM, Kahles FK, Bruemmer D. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis. Curr Atheroscler Rep. 2013;15; DOI:10.1007/s11883-013-0319-7.FindeisenHMKahlesFKBruemmerDEpigenetic regulation of vascular smooth muscle cell function in atherosclerosisCurr Atheroscler Rep20131510.1007/s11883-013-0319-723423526Open DOISearch in Google Scholar

Guo J, Wang Z, Wu J, Liu M, Li M, Sun Y, Huang W, Li Y, Zhang Y, Tang W, Li X, Zhang C, Hong F, Li N, Nie J, Yi F. Endothelial sirt6 is vital to prevent hypertension and associated cardiorenal injury through targeting nkx3.2-gata5 signaling. Circ Res. 2019;124:1448–61; DOI:10.1161/ CIRCRESAHA.118.314032.GuoJWangZWuJLiuMLiMSunYHuangWLiYZhangYTangWLiXZhangCHongFLiNNieJYiFEndothelial sirt6 is vital to prevent hypertension and associated cardiorenal injury through targeting nkx3.2-gata5 signalingCirc Res201912414486110.1161/CIRCRESAHA.118.31403230894089Open DOISearch in Google Scholar

Yerra VG, Advani A. Histones and heart failure in diabetes. Cell Mol Life Sci. 2018;75:3193–213; DOI:10.1007/s00018-018-2857-1.YerraVGAdvaniAHistones and heart failure in diabetesCell Mol Life Sci201875319321310.1007/s00018-018-2857-1606332029934664Open DOISearch in Google Scholar

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95; DOI:10.1038/cr.2011.22.BannisterAJKouzaridesTRegulation of chromatin by histone modificationsCell Res2011213819510.1038/cr.2011.22319342021321607Open DOISearch in Google Scholar

Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 2002;3:39–44; DOI:10.1093/embo-reports/kvf013.BauerUMDaujatSNielsenSJNightingaleKKouzaridesTMethylation at arginine 17 of histone H3 is linked to gene activationEMBO Rep20023394410.1093/embo-reports/kvf013108393211751582Open DOISearch in Google Scholar

Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7:715–27; DOI:10.1038/nrg1945.KloseRJKallinEMZhangYJmjC-domain-containing proteins and histone demethylationNat Rev Genet200677152710.1038/nrg194516983801Open DOISearch in Google Scholar

Johansson C, Tumber A, Che KH, Cain P, Nowak R, Gileadi C, Oppermann U. The roles of Jumonji-type oxygenases in human disease. Epigenomics. 2014;6:89–120; DOI:10.2217/epi.13.79.JohanssonCTumberACheKHCainPNowakRGileadiCOppermannUThe roles of Jumonji-type oxygenases in human diseaseEpigenomics201468912010.2217/epi.13.79423340324579949Open DOISearch in Google Scholar

Leisegang MS, Gu L, Preussner J, Günther S, Hitzel J, Ratiu C, Weigert A, Chen W, Schwarz EC, Looso M, Fork C, Brandes RP. The histone demethylase <scp>PHF</scp> 8 facilitates alternative splicing of the histocompatibility antigen <scp>HLA</scp> ‐G. FEBS Lett. 2019;593:487–98; DOI:10.1002/1873-3468.13337.LeisegangMSGuLPreussnerJGüntherSHitzelJRatiuCWeigertAChenWSchwarzECLoosoMForkCBrandesRPThe histone demethylase <scp>PHF</scp> 8 facilitates alternative splicing of the histocompatibility antigen <scp>HLA</scp> ‐GFEBS Lett20195934879810.1002/1873-3468.1333730758047Open DOISearch in Google Scholar

Fortschegger K, Shiekhattar R. Plant homeodomain fingers form a helping hand for transcription. Epigenetics. 2011;6:4–8; DOI:10.4161/epi.6.1.13297.FortscheggerKShiekhattarRPlant homeodomain fingers form a helping hand for transcriptionEpigenetics201164810.4161/epi.6.1.13297304445920818169Open DOISearch in Google Scholar

Liu W, Tanasa B, Tyurina O V., Zhou TY, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK, Desai A, Dorrestein PC, Glass CK, Rosenfeld MG. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010;466:508–12; DOI:10.1038/nature09272.LiuWTanasaBTyurinaO V.ZhouTYGassmannRLiuWTOhgiKABennerCGarcia-BassetsIAggarwalAKDesaiADorresteinPCGlassCKRosenfeldMGPHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progressionNature20104665081210.1038/nature09272305955120622854Open DOISearch in Google Scholar

Qiu J, Shi G, Jia Y, Li J, Wu M, Li J, Dong S, Wong J. The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res. 2010;20:908–18; DOI:10.1038/cr.2010.81.QiuJShiGJiaYLiJWuMLiJDongSWongJThe X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiationCell Res2010209081810.1038/cr.2010.8120548336Open DOISearch in Google Scholar

Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol. 2010;17:38–44; DOI:10.1038/ nsmb.1753.HortonJRUpadhyayAKQiHHZhangXShiYChengXEnzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylasesNat Struct Mol Biol201017384410.1038/nsmb.1753284997720023638Open DOISearch in Google Scholar

Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB, Gonzales M, Lan F, Ongusaha PP, Huarte M, Yaghi NK, Lim H, Garcia BA, Brizuela L, Zhao K, Roberts TM, Shi Y. Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature. 2010;466:503–7; DOI:10.1038/nature09261.QiHHSarkissianMHuGQWangZBhattacharjeeAGordonDBGonzalesMLanFOngusahaPPHuarteMYaghiNKLimHGarciaBABrizuelaLZhaoKRobertsTMShiYHistone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial developmentNature2010466503710.1038/nature09261307221520622853Open DOISearch in Google Scholar

Osawa T, Muramatsu M, Wang F, Tsuchida R, Kodama T, Minami T, Shibuya M. Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci U S A. 2011;108:20725–9; DOI:10.1073/pnas.1108462109.OsawaTMuramatsuMWangFTsuchidaRKodamaTMinamiTShibuyaMIncreased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesisProc Natl Acad Sci U S A201110820725910.1073/pnas.1108462109325110722143793Open DOISearch in Google Scholar

Huang C, Xiang Y, Wang Y, Li X, Xu L, Zhu Z, Zhang T, Zhu Q, Zhang K, Jing N, Chen CD. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res. 2010;20:154–65; DOI:10.1038/cr.2010.5.HuangCXiangYWangYLiXXuLZhuZZhangTZhuQZhangKJingNChenCDDual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4Cell Res2010201546510.1038/cr.2010.520084082Open DOISearch in Google Scholar

Arteaga MF, Mikesch JH, Qiu J, Christensen J, Helin K, Kogan SC, Dong S, So CWE. The Histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell. 2013;23:376–89; DOI:10.1016/j.ccr.2013.02.014.ArteagaMFMikeschJHQiuJChristensenJHelinKKoganSCDongSSoCWEThe Histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemiaCancer Cell2013233768910.1016/j.ccr.2013.02.014681257223518351Open DOISearch in Google Scholar

Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD. JMJD3 is a histone H3K27 demethylase. Cell Res. 2007;17:850–7; DOI:10.1038/cr.2007.83.XiangYZhuZHanGLinHXuLChenCDJMJD3 is a histone H3K27 demethylaseCell Res200717850710.1038/cr.2007.8317923864Open DOISearch in Google Scholar

Gu L, Hitzel J, Moll F, Kruse C, Malik RA, Preussner J, Looso M, Leisegang MS, Steinhilber D, Brandes RP, Fork C. The histone demethylase PHF8 Is essential for endothelial cell migration. PLoS One. 2016;11; DOI:10.1371/journal.pone.0146645.GuLHitzelJMollFKruseCMalikRAPreussnerJLoosoMLeisegangMSSteinhilberDBrandesRPForkCThe histone demethylase PHF8 Is essential for endothelial cell migrationPLoS One20161110.1371/journal.pone.0146645471344826751588Open DOISearch in Google Scholar

Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015;282:1605–29; DOI:10.1111/febs.13183.FraineauSPaliiCGAllanDSBrandMEpigenetic regulation of endothelial-cell-mediated vascular repairFEBS J201528216052910.1111/febs.1318325546332Open DOISearch in Google Scholar

Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21:1790–802; DOI:10.1101/gad.1563807.MontgomeryRLDavisCAPotthoffMJHaberlandMFielitzJQiXHillJARichardsonJAOlsonENHistone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractilityGenes Dev200721179080210.1101/gad.1563807192017317639084Open DOISearch in Google Scholar

Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med. 2012;18:1194–204; DOI:10.1038/nm.2828.JakovcevskiMAkbarianSEpigenetic mechanisms in neurological diseaseNat Med201218119420410.1038/nm.2828359687622869198Open DOISearch in Google Scholar

Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63; DOI:10.1038/nature02625.EggerGLiangGAparicioAJonesPAEpigenetics in human disease and prospects for epigenetic therapyNature20044294576310.1038/nature0262515164071Open DOISearch in Google Scholar

Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68; DOI:10.1038/nbt.1685.PortelaAEstellerMEpigenetic modifications and human diseaseNat Biotechnol20102810576810.1038/nbt.168520944598Open DOISearch in Google Scholar

Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JMN, Capettini LSA, Lemos VS, Santos RAS, Alvarez-Leite JI. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis. 2014;24:606–13; DOI:10.1016/j.numecd.2014.01.002.AguilarECLeonelAJTeixeiraLGSilvaARSilvaJFPelaezJMNCapettiniLSALemosVSSantosRASAlvarez-LeiteJIButyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activationNutr Metab Cardiovasc Dis2014246061310.1016/j.numecd.2014.01.00224602606Open DOISearch in Google Scholar

Pons D, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling - New targets for therapy in cardiovascular disease. Netherlands Hear J. 2008;16:30–2; DOI:10.1007/BF03086114.PonsDJukemaJWEpigenetic histone acetylation modifiers in vascular remodelling - New targets for therapy in cardiovascular diseaseNetherlands Hear J20081630210.1007/BF03086114244277518612391Open DOISearch in Google Scholar

Ranganna K, M. F, P. O. Emerging Epigenetic Therapy for Vascular Proliferative Diseases. Atherogenesis, InTech; 2012; DOI:10.5772/25367.RangannaKM. F, P. OEmerging Epigenetic Therapy for Vascular Proliferative Diseases. AtherogenesisInTech201210.5772/25367Open DOISearch in Google Scholar

Fish JE, Matouk CC, Rachlis A, Lin S, Tai SC, D’Abreo C, Marsden PA. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem. 2005;280:24824–38; DOI:10.1074/ jbc.M502115200.FishJEMatoukCCRachlisALinSTaiSCD’AbreoCMarsdenPAThe expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone codeJ Biol Chem2005280248243810.1074/jbc.M50211520015870070Open DOISearch in Google Scholar

Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, Epstein JA, Gruber PJ. Histone deacetylase inhibition reduces myocardial ischemia‐ reperfusion injury in mice. FASEB J. 2008;22:3549–60; DOI:10.1096/fj.08-108548.GrangerAAbdullahIHuebnerFStoutAWangTHuebnerTEpsteinJAGruberPJHistone deacetylase inhibition reduces myocardial ischemia‐ reperfusion injury in miceFASEB J20082235496010.1096/fj.08-108548253743218606865Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry