Open Access

Endocrine disruptors: General characteristics, chemical nature and mechanisms of action. A review.


Cite

1. Damstra T, Page SW, Herrman JL, Meredith T. Persistent organic pollutants: potential health effects? Journal of Epidemiology & Community Health. 2002;56(11):824-5; DOI:10.1136/jech.56.11.824.10.1136/jech.56.11.824173206412388570Search in Google Scholar

2. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocrine Reviews. 2009;30(4):293-342; DOI:10.1210/er.2009-0002.10.1210/er.2009-0002272684419502515Search in Google Scholar

3. Kavlock RJ, Daston GP, DeRosa C, FennerCrisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the US EPA-sponsored workshop. Environmental Health Perspectives. 1996;104:715-40; DOI:10.2307/3432708.10.2307/3432708Search in Google Scholar

4. Brevini TAL, Cillo F, Antonini S, Gandolfi F. Effects of endocrine disrupters on the oocytes and embryos of farm animals. Reproduction in Domestic Animals. 2005;40(4):291-9; DOI:10.1111/j.1439-0531.2005.00592.x.10.1111/j.1439-0531.2005.00592.x16008759Search in Google Scholar

5. Calafat AM, Ye XY, Wong LY, Reidy JA, Needham LL. Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environmental Health Perspectives. 2008;116(1):39-44; DOI:10.1289/ehp.10753.10.1289/ehp.10753219928818197297Search in Google Scholar

6. Schiliro T, Gorrasi I, Longo A, Coluccia S, Gilli G. Endocrine disrupting activity in fruits and vegetables evaluated with the E-screen assay in relation to pesticide residues. Journal of Steroid Biochemistry and Molecular Biology. 2011;127(1-2):139-46; DOI:10.1016/j.jsbmb.2011.03.002.10.1016/j.jsbmb.2011.03.00221397020Search in Google Scholar

7. Fingler S, Drevenkar V, Tkalcevic B, Smit Z. Levels of polychlorinated-biphenyls organochlorine pesticides, and and chlrophenols in the Kupa river water and in drinking waters from different areas of Croatia. Bulletin of Environmental Contamination and Toxicology. 1992;49(6):805-12; DOI:10.1007/bf00203151.10.1007/BF002031511450558Search in Google Scholar

8. Abbassy MS, Ibrahim HZ, Abu El-Amayem MM. Occurrence of pesticides and polychlorinated biphenyls in water of the Nile river at the estuaries of Rosetta and Damiatta branches, North of Delta, Egypt. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes. 1999;34(2):255-67; DOI:10.1080/03601239909373196.10.1080/0360123990937319610192956Search in Google Scholar

9. Rajapakse N, Silva E, Kortenkamp A. Combining xenoestrogens at levels below individual No-observed-effect concentrations dramatically enhances steroid hormone action. Environmental Health Perspectives. 2002;110(9):917-21; DOI:10.1289/ehp.02110917.10.1289/ehp.02110917124099212204827Search in Google Scholar

10. Silva E, Rajapakse N, Kortenkamp A. Something from nothing - Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environmental Science & Technology. 2002;36(8):1751-6; DOI:10.1021/es0101227.10.1021/es010122711993873Search in Google Scholar

11. Vom Saal FS, Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environmental Health Perspectives. 2005;113(8):926-33; DOI:10.1289/ehp.7713; DOI: 10.1289/ehp.7713.10.1289/ehp.7713Search in Google Scholar

12. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJR, Schoenfelder G. Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A. Ciencia & Saude Coletiva. 2012;17(2):407-34; DOI:10.1590/s1413-81232012000200015.10.1590/S1413-8123201200020001522267036Search in Google Scholar

13. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vomSaal FS. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environmental Health Perspectives. 2003;111(8):994-1006; DOI:10.1289/ehp.5494.10.1289/ehp.5494124155012826473Search in Google Scholar

14. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Myers JP, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT. Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reproductive Toxicology. 2013;38:1-15; DOI:10.1016/j.reprotox.2013.02.002.10.1016/j.reprotox.2013.02.002390206723411111Search in Google Scholar

15. Boerjan ML, Freijnagel S, Rhind SM, Meijer GAL. The potential reproductive effects of exposure of domestic ruminants to endocrine disrupting compounds. Animal Science. 2002;74:3-12; WOS:000176332900002.10.1017/S1357729800052164Search in Google Scholar

16. De Coster S, van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. Journal of Environmental and Public Health. 2012; 713696; DOI:10.1155/2012/713696.10.1155/2012/713696344360822991565Search in Google Scholar

17. Gaido KW, Maness SC, McDonnell DP, Dehal SS, Kupfer D, Safe S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Molecular Pharmacology. 2000;58(4):852-8; WOS:000089488700024.10.1124/mol.58.4.852Search in Google Scholar

18. Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sciences. 2006;79(12):1160-9; DOI:10.1016/j.lfs.2006.03.02.10.1016/j.lfs.2006.03.023Search in Google Scholar

19. Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;307:74-88; DOI:10.1016/j.tox.2012.11.015.10.1016/j.tox.2012.11.01523219589Search in Google Scholar

20. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine Reviews. 2015;36(6):593-602; DOI:10.1210/er.2015-1093.10.1210/er.2015-1093470249526414233Search in Google Scholar

21. Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT metabolite P,P'-DDE is a potent androgen receptor antagonist. Nature. 1995;375(6532):581-5; DOI:10.1038/375581a0.10.1038/375581a07791873Search in Google Scholar

22. Wetherill YB, Fisher NL, Staubach A, Danielsen M, White RWD, Knudsen KE. Xenoestrogen action in prostate cancer: Pleiotropic effects dependent on androgen receptor status. Cancer Research. 2005;65(1):54-65; WOS:000226080200009.10.1158/0008-5472.54.65.1Search in Google Scholar

23. Wang H, Ding Z, Shi QM, Ge X, Wang HX, Li MX, Chen G, Wang Q, Ju Q, Zhang JP, Zhang MR, Xu LC. Anti-androgenic mechanisms of Bisphenol A involve androgen receptor signaling pathway. Toxicology. 2017;387:10-6; DOI:10.1016/j.tox.2017.06.007.10.1016/j.tox.2017.06.00728645579Search in Google Scholar

24. Hamers T, Kamstra JH, Cenijn PH, Pencikova K, Palkova L, Simeckova P, Vondracek J, Andersson PL, Stenberg M, Machala M. In Vitro Toxicity Profiling of Ultrapure Non-Dioxin-like Polychlorinated Biphenyl Congeners and Their Relative Toxic Contribution to PCB Mixtures in Humans. Toxicological Sciences. 2011;121(1):88-100; DOI:10.1093/toxsci/kfr043.10.1093/toxsci/kfr04321357386Search in Google Scholar

25. Butt CM, Stapleton HM. Inhibition of Thyroid Hormone Sulfotransferase Activity by Brominated Flame Retardants and Halogenated Phenolics. Chemical Research in Toxicology. 2013;26(11):1692-702; DOI:10.1021/tx400342k.10.1021/tx400342k383656624089703Search in Google Scholar

26. Grimm FA, Lehmler HJ, He XR, Robertson LW, Duffel MW. Sulfated Metabolites of Polychlorinated Biphenyls Are High-Affinity Ligands for the Thyroid Hormone Transport Protein Transthyretin. Environmental Health Perspectives. 2013;121(6):657-62; DOI:10.1289/ehp.1206198.10.1289/ehp.1206198367292023584369Search in Google Scholar

27. Smythe TA, Butt CM, Stapleton HM, Pleskach K, Ratnayake G, Song CY, Riddell N, Konstantinov A, Tomy GT. Impacts of Unregulated Novel Brominated Flame Retardants on Human Liver Thyroid Deiodination and Sulfotransferation. Environmental Science & Technology. 2017;51(12):7245-53; DOI:10.1021/acs.est.7b01143.10.1021/acs.est.7b0114328541672Search in Google Scholar

28. Bradshaw TD, Trapani V, Vasselin DA, Westwell AD. The aryl hydrocarbon receptor in anticancer drug discovery: Friend or foe? Current Pharmaceutical Design. 2002;8(27):2475-90; DOI:10.2174/1381612023392784.10.2174/138161202339278412369945Search in Google Scholar

29. Park WH, Kang S, Lee HK, Salihovic S, van Bavel B, Lind PM, Pak YK, Lind L. Relationships between serum-induced AhR bioactivity or mitochondrial inhibition and circulating polychlorinated biphenyls (PCBs). Scientific Reports. 2017;7; DOI:10.1038/s41598-017-09774-1.10.1038/s41598-017-09774-1557120428839207Search in Google Scholar

30. Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH, Brooks BA, Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science. 1991;252(5008):954-8; DOI:10.1126/science.1852076.10.1126/science.18520761852076Search in Google Scholar

31. Dolwick KM, Swanson HI, Bradfield CA. In-vitroanalysis of Ah receptor domains involved in ligand-activated DNA recognition. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(18):8566-70; DOI:10.1073/pnas.90.18.8566.10.1073/pnas.90.18.8566473988397410Search in Google Scholar

32. Sharma RP, Schuhmacher M, Kumar V. Review on crosstalk and common mechanisms of endocrine disruptors: Scaffolding to improve PBPK/PD model of EDC mixture. Environment International. 2017;99:1-14; DOI:10.1016/j.envint.2016.09.016.10.1016/j.envint.2016.09.01627697394Search in Google Scholar

33. Kawajiri K, Fujii-Kuriyama Y. Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Archives of Biochemistry and Biophysics. 2007;464(2):207-12; DOI:10.1016/j.abb.2007.03.038.10.1016/j.abb.2007.03.03817481570Search in Google Scholar

34. Whitehead SA, Rice S. Endocrine-disrupting chemicals as modulators of sex steroid synthesis. Best Practice & Research Clinical Endocrinology & Metabolism. 2006;20(1):45-61; DOI:10.1016/j.beem.2005.09.003.10.1016/j.beem.2005.09.00316522519Search in Google Scholar

35. Phillips KP, Foster WG, Leiss W, Sahni V, Karyakina N, Turner MC, Kacew S, Krewski D. Assessing and managing risks arising from exposure to endocrine-active chemicals. Journal of Toxicology and Environmental Health-Part B-Critical Reviews. 2008;11(3-4):351-72; DOI:10.1080/10937400701876657.10.1080/1093740070187665718368561Search in Google Scholar

36. Basavarajappa MS, Craig ZR, Hernandez-Ochoa I, Paulose T, Leslie TC, Flaws JA. Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro. Toxicology and Applied Pharmacology. 2011;253(3):161-9; DOI:10.1016/j. taap.2011.04.007.10.1016/j.taap.2011.04.007Search in Google Scholar

37. Holloway AC, Anger DA, Crankshaw DJ, Wu M, Foster WG. Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues. Journal of Applied Toxicology. 2008;28(3):260-70; DOI:10.1002/jat.1275.10.1002/jat.127517685393Search in Google Scholar

38. Arase S, Ishii K, Igarashi K, Aisaki K, Yoshio Y, Matsushima A, Shimohigashi Y, Arima K, Kanno J, Sugimura Y. Endocrine Disrupter Bisphenol A Increases In Situ Estrogen Production in the Mouse Urogenital Sinus. Biology of Reproduction. 2011;84(4):734-42; DOI:10.1095/biolreprod.110.087502.10.1095/biolreprod.110.08750221123812Search in Google Scholar

39. Murata M, Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnology Advances. 2018;36(1):311-27; DOI:10.1016/j.biotechadv.2017.12.002.10.1016/j.biotechadv.2017.12.00229229539Search in Google Scholar

40. Foster PMD. Mode of action: Impaired fetalLeydig cell function - Effects on male reproductive development produced by certain phthalate esters. Critical Reviews in Toxicology. 2005;35(8-9):713-9; DOI:10.1080/10408440591007395.10.1080/1040844059100739516417038Search in Google Scholar

41. Kristensen DM, Skalkam ML, Audouze K, Lesne L, Desdoits-Lethimonier C, Frederiksen H, Brunak S, Skakkebæk NE, Jégou B, Hansen JB, Junker S, Leffers H. Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis. Environmental Health Perspectives. 2011;119(4):534-41; DOI:10.1289/ehp.1002635.10.1289/ehp.1002635308093721081300Search in Google Scholar

42. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nature Reviews Genetics. 2007;8(4):253-62; DOI:10.1038/nrg2045.10.1038/nrg2045594001017363974Search in Google Scholar

43. Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG. Environmental Neurotoxic Pesticide Increases Histone Acetylation to Promote Apoptosis in Dopaminergic Neuronal Cells: Relevance to Epigenetic Mechanisms of Neurodegeneration. Molecular Pharmacology. 2010;77(4):621-32; DOI:10.1124/mol.109.062174.10.1124/mol.109.062174284776920097775Search in Google Scholar

44. Kang ER, Iqbal K, Tran DA, Rivas GE, Singh P, Pfeifer GP, Szabó PE. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics. 2011;6(7):937-50.DOI:10.4161/epi.6.7.16067.10.4161/epi.6.7.16067315443421636974Search in Google Scholar

45. Collotta M, Bertazzi PA, Bollati V. Epigenetics and pesticides. Toxicology. 2013;307:35-41; DOI:10.1016/j.tox.2013.01.017.10.1016/j.tox.2013.01.01723380243Search in Google Scholar

46. Turner BM. Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B-Biological Sciences. 2009;364(1534):3403-18; DOI:10.1098/rstb.2009.0125.10.1098/rstb.2009.0125278184519833651Search in Google Scholar

47. Chang HS, Anway MD, Rekow SS, Skinner MK. RETRACTED: Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination (Retracted article. See vol. 150, pg. 2976, 2009). Endocrinology. 2006;147(12):5524-41; DOI:10.1210/en.2006-0987.10.1210/en.2006-098716973722Search in Google Scholar

48. Nelson KG, Sakai Y, Eitzman B, Steed T, McLachlan J. Exposure to Diethylstilbestrol during a critical developmental period of the mouse reproductive-tract leads to persistent induction of 2 estrogen-regulated genes. Cell Growth & Differentiation. 1994;5(6):595-606; WOS:A1994NP79900005.Search in Google Scholar

49. Li SF, Washburn KA, Moore R, Uno T, Teng C, Newbold RR, McLachlan JA, Negishi M. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Research. 1997;57(19):4356-9; WOS:A1997XZ01100036.Search in Google Scholar

50. Li SF, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Molecular Carcinogenesis. 2003;38(2):78-84; DOI:10.1002/mc.10147.10.1002/mc.1014714502647Search in Google Scholar

51. Zama AM, Uzumcu M. Fetal and Neonatal Exposure to the Endocrine Disruptor Methoxychlor Causes Epigenetic Alterations in Adult Ovarian Genes. Endocrinology. 2009;150(10):4681-91; DOI:10.1210/en.2009-0499.10.1210/en.2009-0499275468019589859Search in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry