Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer ResearchNanjing, China
This work is licensed under the Creative Commons Attribution 4.0 International License.
GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396:1223–49.GBD 2019 Risk Factors CollaboratorsGlobal burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019Lancet2020396122349Search in Google Scholar
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int J Environ Res Public Health. 2018; 15:1380. doi: 10.3390/ijerph15071380ChoCCHsiehWYTsaiCHChenCYChangHFLinCSIn vitro and in vivo experimental studies of PM2.5 on disease progressionInt J Environ Res Public Health201815138010.3390/ijerph15071380Open DOISearch in Google Scholar
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389:1907–18.CohenAJBrauerMBurnettRAndersonHRFrostadJEstepKEstimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015Lancet2017389190718Search in Google Scholar
Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, et al. Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study. Lancet. 2017; 389:718–26.ChenHKwongJCCopesRTuKVilleneuvePJvan DonkelaarALiving near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort studyLancet201738971826Search in Google Scholar
Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect. 2015; 123:381–9.EzeICHemkensLGBucherHCHoffmannBSchindlerCKünzliNAssociation between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysisEnviron Health Perspect20151233819Search in Google Scholar
Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014; 383:785–95.BeelenRRaaschou-NielsenOStafoggiaMAndersenZJWeinmayrGHoffmannBEffects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE projectLancet201438378595Search in Google Scholar
Narengaowa, Kong W, Lan F, Awan UF, Qing H, Ni J. The Oral-Gut-Brain AXIS: the influence of microbes in Alzheimer's disease. Front Cell Neurosci. 2021; 15:633735. doi: 10.3389/fncel.2021.633735NarengaowaKong WLanFAwanUFQingHNiJThe Oral-Gut-Brain AXIS: the influence of microbes in Alzheimer's diseaseFront Cell Neurosci20211563373510.3389/fncel.2021.633735Open DOISearch in Google Scholar
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015; 28:203–9.CarabottiMSciroccoAMaselliMASeveriCThe gut-brain axis: interactions between enteric microbiota, central and enteric nervous systemsAnn Gastroenterol2015282039Search in Google Scholar
Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol. 2024; 22:89–104.BakerJLMark WelchJLKauffmanKMMcLeanJSHeXThe oral microbiome: diversity, biogeography and human healthNat Rev Microbiol20242289104Search in Google Scholar
Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 2020; 287:833–55.IllianoPBrambillaRParoliniCThe mutual interplay of gut microbiota, diet and human diseaseFEBS J202028783355Search in Google Scholar
Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010; 10:159–69.HooperLVMacphersonAJImmune adaptations that maintain homeostasis with the intestinal microbiotaNat Rev Immunol20101015969Search in Google Scholar
Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017; 46:562–76.BelkaidYHarrisonOJHomeostatic immunity and the microbiotaImmunity20174656276Search in Google Scholar
Hovav AH. Dendritic cells of the oral mucosa. Mucosal Immunol. 2014; 7:27–37.HovavAHDendritic cells of the oral mucosaMucosal Immunol201472737Search in Google Scholar
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009; 9:799–809.TurnerJRIntestinal mucosal barrier function in health and diseaseNat Rev Immunol20099799809Search in Google Scholar
Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, et al. Oral-gut-brain axis in experimental models of periodontitis: associating gut dysbiosis with neurodegenerative diseases. Front Aging. 2021; 2:781582. doi: 10.3389/fragi.2021.781582Sansores-EspañaLDMelgar-RodríguezSOlivares-SagredoKCafferataEAMartínez-AguilarVMVernalROral-gut-brain axis in experimental models of periodontitis: associating gut dysbiosis with neurodegenerative diseasesFront Aging2021278158210.3389/fragi.2021.781582Open DOISearch in Google Scholar
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019; 99:1877–2013.CryanJFO'RiordanKJCowanCSMSandhuKVBastiaanssenTFSBoehmeMThe microbiota-gut-brain axisPhysiol Rev20199918772013Search in Google Scholar
Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int. 2018; 120:149–63.SpielmanLJGibsonDLKlegerisAUnhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseasesNeurochem Int201812014963Search in Google Scholar
Bowland GB, Weyrich LS. The oral-microbiome-brain axis and neuropsychiatric disorders: an anthropological perspective. Front Psychiatry. 2022; 13:810008. doi: 10.3389/fpsyt.2022.810008BowlandGBWeyrichLSThe oral-microbiome-brain axis and neuropsychiatric disorders: an anthropological perspectiveFront Psychiatry20221381000810.3389/fpsyt.2022.810008Open DOISearch in Google Scholar
Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C, Soberanes S, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut. 2018; 240:817–30.MutluEACombaIYChoTEngenPAYazıcıCSoberanesSInhalational exposure to particulate matter air pollution alters the composition of the gut microbiomeEnviron Pollut201824081730Search in Google Scholar
Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014; 5:215–9.SalimSYKaplanGGMadsenKLAir pollution effects on the gut microbiota: a link between exposure and inflammatory diseaseGut Microbes201452159Search in Google Scholar
Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015; 74:136–43.KimKHKabirEKabirSA review on the human health impact of airborne particulate matterEnviron Int20157413643Search in Google Scholar
Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016; 128:67–74.FengSGaoDLiaoFZhouFWangXThe health effects of ambient PM2.5 and potential mechanismsEcotoxicol Environ Saf20161286774Search in Google Scholar
Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016; 8:E69–74.XingYFXuYHShiMHLianYXThe impact of PM2.5 on the human respiratory systemJ Thorac Dis20168E6974Search in Google Scholar
Kim BE, Kim J, Goleva E, Berdyshev E, Lee J, Vang KA, et al. Particulate matter causes skin barrier dysfunction. JCI Insight. 2021; 6:e145185. doi: 10.1172/jci.insight.145185KimBEKimJGolevaEBerdyshevELeeJVangKAParticulate matter causes skin barrier dysfunctionJCI Insight20216e14518510.1172/jci.insight.145185Open DOISearch in Google Scholar
Yang TH, Masumi S, Weng SP, Chen HW, Chuang HC, Chuang KJ. Personal exposure to particulate matter and inflammation among patients with periodontal disease. Sci Total Environ. 2015; 502:585–9.YangTHMasumiSWengSPChenHWChuangHCChuangKJPersonal exposure to particulate matter and inflammation among patients with periodontal diseaseSci Total Environ20155025859Search in Google Scholar
Chu YH, Kao SW, Tantoh DM, Ko PC, Lan SJ, Liaw YP. Association between fine particulate matter and oral cancer among Taiwanese men. J Investig Med. 2019; 67:34–8.ChuYHKaoSWTantohDMKoPCLanSJLiawYPAssociation between fine particulate matter and oral cancer among Taiwanese menJ Investig Med201967348Search in Google Scholar
Elten M, Benchimol EI, Fell DB, Kuenzig ME, Smith G, Chen H, et al. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: a population-based cohort study. Environ Int. 2020; 138:105676. doi: 10.1016/j.envint.2020.105676EltenMBenchimolEIFellDBKuenzigMESmithGChenHAmbient air pollution and the risk of pediatric-onset inflammatory bowel disease: a population-based cohort studyEnviron Int202013810567610.1016/j.envint.2020.105676Open DOISearch in Google Scholar
Han C, Lu Y, Cheng H, Wang C, Chan P. The impact of long-term exposure to ambient air pollution and second-hand smoke on the onset of Parkinson disease: a review and meta-analysis. Pub Health. 2020; 179:100–10.HanCLuYChengHWangCChanPThe impact of long-term exposure to ambient air pollution and second-hand smoke on the onset of Parkinson disease: a review and meta-analysisPub Health202017910010Search in Google Scholar
Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer's disease: a population-based cohort study in Taiwan. J Alzheimers Dis. 2015; 44:573–84.JungCRLinYTHwangBFOzone, particulate matter, and newly diagnosed Alzheimer's disease: a population-based cohort study in TaiwanJ Alzheimers Dis20154457384Search in Google Scholar
Masroor K, Shamsipour M, Mehrdad R, Fanaei F, Aghaei M, Yunesian M. Exposure to ambient gaseous air pollutants and adult lung function: a systematic review. Rev Environ Health. 2021; 38:137–50.MasroorKShamsipourMMehrdadRFanaeiFAghaeiMYunesianMExposure to ambient gaseous air pollutants and adult lung function: a systematic reviewRev Environ Health20213813750Search in Google Scholar
Nuvolone D, Petri D, Voller F. The effects of ozone on human health. Environ Sci Pollut Res Int. 2018; 25:8074–88.NuvoloneDPetriDVollerFThe effects of ozone on human healthEnviron Sci Pollut Res Int201825807488Search in Google Scholar
Rivas-Arancibia S, Miranda-Martínez A, Rodríguez-Martínez E, Hernández-Orozco E, Valdés-Fuentes M, De la Rosa-Sierra R. Ozone environmental pollution: relationship between the intestine and neurodegenerative diseases. Antioxidants (Basel). 2023; 12:1323. doi: 10.3390/antiox12071323Rivas-ArancibiaSMiranda-MartínezARodríguez-MartínezEHernández-OrozcoEValdés-FuentesMDe la Rosa-SierraROzone environmental pollution: relationship between the intestine and neurodegenerative diseasesAntioxidants (Basel)202312132310.3390/antiox12071323Open DOISearch in Google Scholar
Kan H, Wong CM, Vichit-Vadakan N, Qian Z; PAPA Project Teams. Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study. Environ Res. 2010; 110:258–64.KanHWongCMVichit-VadakanNQianZPAPA Project TeamsShort-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) studyEnviron Res201011025864Search in Google Scholar
Głódkowska N, Emerich K. The impact of environmental air pollution on the prevalence of molar incisor hypomineralization in schoolchildren: a cross-sectional study. Adv Clin Exp Med. 2020; 29:1469–77.GłódkowskaNEmerichKThe impact of environmental air pollution on the prevalence of molar incisor hypomineralization in schoolchildren: a cross-sectional studyAdv Clin Exp Med202029146977Search in Google Scholar
Xu C, Kan HD, Fan YN, Chen RJ, Liu JH, Li YF, et al. Acute effects of air pollution on enteritis admissions in Xi'an, China. J Toxicol Environ Health A. 2016; 79:1183–9.XuCKanHDFanYNChenRJLiuJHLiYFAcute effects of air pollution on enteritis admissions in Xi'an, ChinaJ Toxicol Environ Health A20167911839Search in Google Scholar
Shen S, Li X, Yuan C, Huang Q, Liu D, Ma S, et al. Association of short-term exposure to sulfur dioxide and hospitalization for ischemic and hemorrhagic stroke in Guangzhou, China. BMC Public Health. 2020; 20:263. doi: 10.1186/s12889-020-8354-0ShenSLiXYuanCHuangQLiuDMaSAssociation of short-term exposure to sulfur dioxide and hospitalization for ischemic and hemorrhagic stroke in Guangzhou, ChinaBMC Public Health20202026310.1186/s12889-020-8354-0Open DOISearch in Google Scholar
Liu FH, Xing Z, Gong TT, Zhang JY, Huang YH, Li J, et al. Maternal exposure to sulfur dioxide and the risk of oral clefts in Liaoning Province, China: a population-based case-control study. Environ Sci Pollut Res Int. 2021; 28:39101–9.LiuFHXingZGongTTZhangJYHuangYHLiJMaternal exposure to sulfur dioxide and the risk of oral clefts in Liaoning Province, China: a population-based case-control studyEnviron Sci Pollut Res Int202128391019Search in Google Scholar
Rao A, Ahmed MK, Taub PJ, Mamoun JS. The correlation between maternal exposure to air pollution and the risk of orofacial clefts in infants: a systematic review and meta-analysis. J Oral Maxillofac Res. 2016; 7:e2. doi: 10.5037/jomr.2016.7102RaoAAhmedMKTaubPJMamounJSThe correlation between maternal exposure to air pollution and the risk of orofacial clefts in infants: a systematic review and meta-analysisJ Oral Maxillofac Res20167e210.5037/jomr.2016.7102Open DOISearch in Google Scholar
Huang S, Li H, Wang M, Qian Y, Steenland K, Caudle WM, et al. Long-term exposure to nitrogen dioxide and mortality: a systematic review and meta-analysis. Sci Total Environ. 2021; 776:145968. doi: 10.1016/j.scitotenv.2021.145968HuangSLiHWangMQianYSteenlandKCaudleWMLong-term exposure to nitrogen dioxide and mortality: a systematic review and meta-analysisSci Total Environ202177614596810.1016/j.scitotenv.2021.145968Open DOISearch in Google Scholar
D'Amato G, Liccardi G, D'Amato M, Cazzola M. Respiratory allergic diseases induced by outdoor air pollution in urban areas. Monaldi Arch Chest Dis. 2002; 57:161–3.D'AmatoGLiccardiGD'AmatoMCazzolaMRespiratory allergic diseases induced by outdoor air pollution in urban areasMonaldi Arch Chest Dis2002571613Search in Google Scholar
Tian L, Qiu H, Sun S, Tsang H, Chan KP, Leung WK. Association between emergency admission for peptic ulcer bleeding and air pollution: a case-crossover analysis in Hong Kong's elderly population. Lancet Planet Health. 2017; 1:e74–81.TianLQiuHSunSTsangHChanKPLeungWKAssociation between emergency admission for peptic ulcer bleeding and air pollution: a case-crossover analysis in Hong Kong's elderly populationLancet Planet Health20171e7481Search in Google Scholar
Jo S, Kim YJ, Park KW, Hwang YS, Lee SH, Kim BJ, et al. Association of NO2 and other air pollution exposures with the risk of Parkinson disease. JAMA Neurol. 2021; 78:800–8.JoSKimYJParkKWHwangYSLeeSHKimBJAssociation of NO2 and other air pollution exposures with the risk of Parkinson diseaseJAMA Neurol2021788008Search in Google Scholar
Prockop LD, Chichkova RI. Carbon monoxide intoxication: an updated review. J Neurol Sci. 2007; 262:122–30.ProckopLDChichkovaRICarbon monoxide intoxication: an updated reviewJ Neurol Sci200726212230Search in Google Scholar
Gregorczyk-Maga I, Celejewska-Wojcik N, Gosiewska-Pawlica D, Darczuk D, Kesek B, Maga M, et al. Exposure to air pollution and oxidative stress markers in patients with potentially malignant oral disorders. J Physiol Pharmacol. 2019; 70:115–20. doi: 10.26402/jpp.2019.1.09Gregorczyk-MagaICelejewska-WojcikNGosiewska-PawlicaDDarczukDKesekBMagaMExposure to air pollution and oxidative stress markers in patients with potentially malignant oral disordersJ Physiol Pharmacol2019701152010.26402/jpp.2019.1.09Open DOISearch in Google Scholar
Brito-Zerón P, Flores-Chávez A, Ng WF, Fanny Horváth I, Rasmussen A, Priori R, et al. Exposure to air pollution as an environmental determinant of how Sjögren's disease is expressed at diagnosis. Clin Exp Rheumatol. 2023; 41:2448–57.Brito-ZerónPFlores-ChávezANgWFFanny HorváthIRasmussenAPrioriRExposure to air pollution as an environmental determinant of how Sjögren's disease is expressed at diagnosisClin Exp Rheumatol202341244857Search in Google Scholar
Sabour S, Harzand-Jadidi S, Jafari-Khounigh A, Zarea Gavgani V, Sedaghat Z, Alavi N. The association between ambient air pollution and migraine: a systematic review. Environ Monit Assess. 2024; 196:271. doi: 10.1007/s10661-024-12376-wSabourSHarzand-JadidiSJafari-KhounighAZarea GavganiVSedaghatZAlaviNThe association between ambient air pollution and migraine: a systematic reviewEnviron Monit Assess202419627110.1007/s10661-024-12376-wOpen DOISearch in Google Scholar
Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020; 8:14. doi: 10.3389/fpubh.2020.00014ManisalidisIStavropoulouEStavropoulosABezirtzoglouEEnvironmental and health impacts of air pollution: a reviewFront Public Health202081410.3389/fpubh.2020.00014Open DOISearch in Google Scholar
Sam K, Onyena AP, Zabbey N, Odoh CK, Nwipie GN, Nkeeh DK, et al. Prospects of emerging PAH sources and remediation technologies: insights from Africa. Environ Sci Pollut Res Int. 2023; 30:39451–73.SamKOnyenaAPZabbeyNOdohCKNwipieGNNkeehDKProspects of emerging PAH sources and remediation technologies: insights from AfricaEnviron Sci Pollut Res Int2023303945173Search in Google Scholar
Zhang G, Huang X, Liao W, Kang S, Ren M, Hai J. Measurement of dioxin emissions from a small-scale waste incinerator in the absence of air pollution controls. Int J Environ Res Public Health. 2019; 16:1267. doi: 10.3390/ijerph16071267ZhangGHuangXLiaoWKangSRenMHaiJMeasurement of dioxin emissions from a small-scale waste incinerator in the absence of air pollution controlsInt J Environ Res Public Health201916126710.3390/ijerph16071267Open DOISearch in Google Scholar
Paget-Bailly S, Cyr D, Luce D. Occupational exposures to asbestos, polycyclic aromatic hydrocarbons and solvents, and cancers of the oral cavity and pharynx: a quantitative literature review. Int Arch Occup Environ Health. 2012; 85:341–51.Paget-BaillySCyrDLuceDOccupational exposures to asbestos, polycyclic aromatic hydrocarbons and solvents, and cancers of the oral cavity and pharynx: a quantitative literature reviewInt Arch Occup Environ Health20128534151Search in Google Scholar
Cho J, Sohn J, Yang SH, Lee SK, Noh Y, Oh SS, et al. Polycyclic aromatic hydrocarbons and changes in brain cortical thickness and an Alzheimer's disease-specific marker for cortical atrophy in adults: a longitudinal neuroimaging study of the EPINEF cohort. Chemosphere. 2023; 338:139596. doi: 10.1016/j.chemosphere.2023.139596ChoJSohnJYangSHLeeSKNohYOhSSPolycyclic aromatic hydrocarbons and changes in brain cortical thickness and an Alzheimer's disease-specific marker for cortical atrophy in adults: a longitudinal neuroimaging study of the EPINEF cohortChemosphere202333813959610.1016/j.chemosphere.2023.139596Open DOISearch in Google Scholar
Tanaka M, Okuda T, Itoh K, Ishihara N, Oguro A, Fujii-Kuriyama Y, et al. Polycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammation. Part Fibre Toxicol. 2023; 20:6. doi: 10.1186/s12989-023-00517-xTanakaMOkudaTItohKIshiharaNOguroAFujii-KuriyamaYPolycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammationPart Fibre Toxicol202320610.1186/s12989-023-00517-xOpen DOISearch in Google Scholar
Alaluusua S, Lukinmaa PL. Developmental dental toxicity of dioxin and related compounds – a review. Int Dent J. 2006; 56:323–31.AlaluusuaSLukinmaaPLDevelopmental dental toxicity of dioxin and related compounds – a reviewInt Dent J20065632331Search in Google Scholar
Kawasaki G, Yoshitomi I. Effect of dioxin-related compounds on oral pigmentation in patients affected by the Yusho incident. Arch Oral Biol. 2019; 102:244–8.KawasakiGYoshitomiIEffect of dioxin-related compounds on oral pigmentation in patients affected by the Yusho incidentArch Oral Biol20191022448Search in Google Scholar
Petriello MC, Hoffman JB, Vsevolozhskaya O, Morris AJ, Hennig B. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut. 2018; 242:1022–32.PetrielloMCHoffmanJBVsevolozhskayaOMorrisAJHennigBDioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasisEnviron Pollut2018242102232Search in Google Scholar
Tran NN, Pham TT, Ozawa K, Nishijo M, Nguyen AT, Tran TQ, et al. Impacts of perinatal dioxin exposure on motor coordination and higher cognitive development in Vietnamese preschool children: a five-year follow-up. PLoS One. 2016; 11:e0147655. doi: 10.1371/journal.pone.0147655TranNNPhamTTOzawaKNishijoMNguyenATTranTQImpacts of perinatal dioxin exposure on motor coordination and higher cognitive development in Vietnamese preschool children: a five-year follow-upPLoS One201611e014765510.1371/journal.pone.0147655Open DOISearch in Google Scholar
Suvarapu LN, Baek SO. Determination of heavy metals in the ambient atmosphere. Toxicol Ind Health. 2017; 33:79–96.SuvarapuLNBaekSODetermination of heavy metals in the ambient atmosphereToxicol Ind Health2017337996Search in Google Scholar
Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018; 119:157–84.RehmanKFatimaFWaheedIAkashMSHPrevalence of exposure of heavy metals and their impact on health consequencesJ Cell Biochem201811915784Search in Google Scholar
Gundacker C, Forsthuber M, Szigeti T, Kakucs R, Mustieles V, Fernandez MF, et al. Lead (Pb) and neurodevelopment: a review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health. 2021; 238:113855. doi: 10.1016/j.ijheh.2021.113855GundackerCForsthuberMSzigetiTKakucsRMustielesVFernandezMFLead (Pb) and neurodevelopment: a review on exposure and biomarkers of effect (BDNF, HDL) and susceptibilityInt J Hyg Environ Health202123811385510.1016/j.ijheh.2021.113855Open DOISearch in Google Scholar
He L, Norris C, Cui X, Li Z, Barkjohn KK, Teng Y, et al. Oral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic children. Environ Res. 2022; 206:112275. doi: 10.1016/j.envres.2021.112275HeLNorrisCCuiXLiZBarkjohnKKTengYOral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic childrenEnviron Res202220611227510.1016/j.envres.2021.112275Open DOISearch in Google Scholar
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022; 77:1418–49.Celebi SozenerZOzdel OzturkBCerciPTurkMGorgulu AkinBAkdisMEpithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic diseaseAllergy202277141849Search in Google Scholar
Ceretti E, Feretti D, Viola GC, Zerbini I, Limina RM, Zani C, et al. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants. PLoS One. 2014; 9:e96524. doi: 10.1371/journal.pone.0096524CerettiEFerettiDViolaGCZerbiniILiminaRMZaniCDNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutantsPLoS One20149e9652410.1371/journal.pone.0096524Open DOISearch in Google Scholar
Mondal NK, Dutta A, Banerjee A, Chakraborty S, Lahiri T, Ray MR. Effect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cells. J Environ Pathol Toxicol Oncol. 2009; 28:253–9.MondalNKDuttaABanerjeeAChakrabortySLahiriTRayMREffect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cellsJ Environ Pathol Toxicol Oncol2009282539Search in Google Scholar
Chen H, Peng L, Wang Z, He Y, Zhang X. Exploring the causal relationship between periodontitis and gut microbiome: unveiling the oral-gut and gut-oral axes through bidirectional Mendelian randomization. J Clin Periodontol. 2024; 51:417–30.ChenHPengLWangZHeYZhangXExploring the causal relationship between periodontitis and gut microbiome: unveiling the oral-gut and gut-oral axes through bidirectional Mendelian randomizationJ Clin Periodontol20245141730Search in Google Scholar
Gaeckle NT, Pragman AA, Pendleton KM, Baldomero AK, Criner GJ. The oral-lung axis: the impact of oral health on lung health. Respir Care. 2020; 65:1211–20.GaeckleNTPragmanAAPendletonKMBaldomeroAKCrinerGJThe oral-lung axis: the impact of oral health on lung healthRespir Care202065121120Search in Google Scholar
Vignal C, Pichavant M, Alleman LY, Djouina M, Dingreville F, Perdrix E, et al. Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part Fibre Toxicol. 2017; 14:46. doi: 10.1186/s12989-017-0227-zVignalCPichavantMAllemanLYDjouinaMDingrevilleFPerdrixEEffects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colonPart Fibre Toxicol2017144610.1186/s12989-017-0227-zOpen DOISearch in Google Scholar
Bostancıklıoğlu M. Temporal correlation between neurological and gastrointestinal symptoms of SARS-CoV-2. Inflamm Bowel Dis. 2020; 26:e89–91.BostancıklıoğluMTemporal correlation between neurological and gastrointestinal symptoms of SARS-CoV-2Inflamm Bowel Dis202026e8991Search in Google Scholar
Morais LH, Hara DB, Bicca MA, Poli A, Takahashi RN. Early signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson's disease. Behav Pharmacol. 2018; 29:199–210.MoraisLHHaraDBBiccaMAPoliATakahashiRNEarly signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson's diseaseBehav Pharmacol201829199210Search in Google Scholar
Calderón-Garcidueñas L, Leray E, Heydarpour P, Torres-Jardón R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: the clinical impact on children and beyond. Rev Neurol (Paris). 2016; 172:69–80.Calderón-GarcidueñasLLerayEHeydarpourPTorres-JardónRReisJAir pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: the clinical impact on children and beyondRev Neurol (Paris)20161726980Search in Google Scholar
Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol. 2008; 63:7–15.DotyRLThe olfactory vector hypothesis of neurodegenerative disease: is it viable?Ann Neurol200863715Search in Google Scholar
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, et al. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol. 2024; 15:1358179. doi: 10.3389/fmicb.2024.1358179LiRWangJXiongWLuoYFengHZhouHThe oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease?Front Microbiol202415135817910.3389/fmicb.2024.1358179Open DOISearch in Google Scholar
Yu W, Lu L, Ji X, Qian Q, Lin X, Wang H. Recent advances on possible association between the periodontal infection of Porphyromonas gingivalis and central nervous system injury. J Alzheimers Dis. 2021; 84:51–9.YuWLuLJiXQianQLinXWangHRecent advances on possible association between the periodontal infection of Porphyromonas gingivalis and central nervous system injuryJ Alzheimers Dis202184519Search in Google Scholar
Cestari JA, Fabri GM, Kalil J, Nitrini R, Jacob-Filho W, Tesseroli de Siqueira JT, et al. Oral infections and cytokine levels in patients with Alzheimer's disease and mild cognitive impairment compared with controls. J Alzheimers Dis. 2016; 54:845. doi: 10.3233/JAD-169006CestariJAFabriGMKalilJNitriniRJacob-FilhoWTesseroli de SiqueiraJTOral infections and cytokine levels in patients with Alzheimer's disease and mild cognitive impairment compared with controlsJ Alzheimers Dis20165484510.3233/JAD-169006Open DOISearch in Google Scholar
Mori C, Hakuta C, Endo K, Nariai T, Ueno M, Shinada K, et al. The effects of professional oral health care on patients in the subacute stage of emergent neurosurgical disorders. Spec Care Dentist. 2012; 32:259–64.MoriCHakutaCEndoKNariaiTUenoMShinadaKThe effects of professional oral health care on patients in the subacute stage of emergent neurosurgical disordersSpec Care Dentist20123225964Search in Google Scholar
Churg A, Brauer M. Ambient atmospheric particles in the airways of human lungs. Ultrastruct Pathol. 2000; 24:353–61.ChurgABrauerMAmbient atmospheric particles in the airways of human lungsUltrastruct Pathol20002435361Search in Google Scholar
Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P. Aeroparticles, composition, and lung diseases. Front Immunol. 2016; 7:3. doi: 10.3389/fimmu.2016.00003Falcon-RodriguezCIOsornio-VargasARSada-OvalleISegura-MedinaPAeroparticles, composition, and lung diseasesFront Immunol20167310.3389/fimmu.2016.00003Open DOISearch in Google Scholar
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res. 2024; 19:519–28.XieXWangLDongSGeSZhuTImmune regulation of the gut-brain axis and lung-brain axis involved in ischemic strokeNeural Regen Res20241951928Search in Google Scholar
Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host transcriptional regulatory genes and microbiome networks crosstalk through immune receptors establishing normal and tumor multiomics metafirm of the oral-gut-lung axis. Int J Mol Sci. 2023; 24:16638. doi: 10.3390/ijms242316638Otálora-OtáloraBALópez-RiveraJJAristizábal-GuzmánCIsaza-RugetMAÁlvarez-MorenoCAHost transcriptional regulatory genes and microbiome networks crosstalk through immune receptors establishing normal and tumor multiomics metafirm of the oral-gut-lung axisInt J Mol Sci2023241663810.3390/ijms242316638Open DOISearch in Google Scholar
Ural BB, Caron DP, Dogra P, Wells SB, Szabo PA, Granot T, et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med. 2022; 28:2622–32.UralBBCaronDPDograPWellsSBSzaboPAGranotTInhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodesNat Med202228262232Search in Google Scholar
Pambianchi E, Pecorelli A, Valacchi G. Gastrointestinal tissue as a “new” target of pollution exposure. IUBMB Life. 2022; 74:62–73.PambianchiEPecorelliAValacchiGGastrointestinal tissue as a “new” target of pollution exposureIUBMB Life2022746273Search in Google Scholar
Keulers L, Dehghani A, Knippels L, Garssen J, Papadopoulos N, Folkerts G, et al. Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: the gut-lung axis. Environ Pollut. 2022; 302:119066. doi: 10.1016/j.envpol.2022.119066KeulersLDehghaniAKnippelsLGarssenJPapadopoulosNFolkertsGProbiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: the gut-lung axisEnviron Pollut202230211906610.1016/j.envpol.2022.119066Open DOISearch in Google Scholar
Sze MA, Tsuruta M, Yang SW, Oh Y, Man SF, Hogg JC, et al. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One. 2014; 9:e111228. doi: 10.1371/journal.pone.0111228SzeMATsurutaMYangSWOhYManSFHoggJCChanges in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungsPLoS One20149e11122810.1371/journal.pone.0111228Open DOISearch in Google Scholar
Breithaupt-Faloppa AC, Vitoretti LB, Cavriani G, Lino-dos-Santos-Franco A, Sudo-Hayashi LS, Oliveira-Filho RM, et al. Intestinal lymph-borne factors induce lung release of inflammatory mediators and expression of adhesion molecules after an intestinal ischemic insult. J Surg Res. 2012; 176:195–201.Breithaupt-FaloppaACVitorettiLBCavrianiGLino-dos-Santos-FrancoASudo-HayashiLSOliveira-FilhoRMIntestinal lymph-borne factors induce lung release of inflammatory mediators and expression of adhesion molecules after an intestinal ischemic insultJ Surg Res2012176195201Search in Google Scholar
Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017; 15:55–63.BuddenKFGellatlySLWoodDLCooperMAMorrisonMHugenholtzPEmerging pathogenic links between microbiota and the gut-lung axisNat Rev Microbiol2017155563Search in Google Scholar
Wallace JL, Ianaro A, de Nucci G. Gaseous mediators in gastrointestinal mucosal defense and injury. Dig Dis Sci. 2017; 62:2223–30.WallaceJLIanaroAde NucciGGaseous mediators in gastrointestinal mucosal defense and injuryDig Dis Sci201762222330Search in Google Scholar
Mutlu EA, Engen PA, Soberanes S, Urich D, Forsyth CB, Nigdelioglu R, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 2011; 8:19. doi: 10.1186/1743-8977-8-19MutluEAEngenPASoberanesSUrichDForsythCBNigdeliogluRParticulate matter air pollution causes oxidant-mediated increase in gut permeability in micePart Fibre Toxicol201181910.1186/1743-8977-8-19Open DOISearch in Google Scholar
Wang J, Yan Y, Si H, Li J, Zhao Y, Gao T, et al. The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2. Ecotoxicol Environ Saf. 2023; 254:114702. doi: 10.1016/j.ecoenv.2023.114702WangJYanYSiHLiJZhaoYGaoTThe effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2Ecotoxicol Environ Saf202325411470210.1016/j.ecoenv.2023.114702Open DOISearch in Google Scholar
Gu J, Shi Y, Zhu Y, Chen N, Wang H, Zhang Z, et al. Ambient air pollution and cause-specific risk of hospital admission in China: a nationwide time-series study. PLoS Med. 2020; 17:e1003188. doi: 10.1371/journal.pmed.1003188GuJShiYZhuYChenNWangHZhangZAmbient air pollution and cause-specific risk of hospital admission in China: a nationwide time-series studyPLoS Med202017e100318810.1371/journal.pmed.1003188Open DOISearch in Google Scholar
Vari HK, Roslund MI, Oikarinen S, Nurminen N, Puhakka R, Parajuli A, et al. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere. 2021; 265:128965. doi: 10.1016/j.chemosphere.2020.128965VariHKRoslundMIOikarinenSNurminenNPuhakkaRParajuliAAssociations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderlyChemosphere202126512896510.1016/j.chemosphere.2020.128965Open DOISearch in Google Scholar
Liu CX, Liu YB, Peng Y, Peng J, Ma QL. Causal effect of air pollution on the risk of cardiovascular and metabolic diseases and potential mediation by gut microbiota. Sci Total Environ. 2024; 912:169418. doi: 10.1016/j.scitotenv.2023.169418LiuCXLiuYBPengYPengJMaQLCausal effect of air pollution on the risk of cardiovascular and metabolic diseases and potential mediation by gut microbiotaSci Total Environ202491216941810.1016/j.scitotenv.2023.169418Open DOISearch in Google Scholar
Siopi E, Galerne M, Rivagorda M, Saha S, Moigneu C, Moriceau S, et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Mol Psychiatry. 2023; 28:3002–12.SiopiEGalerneMRivagordaMSahaSMoigneuCMoriceauSGut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in miceMol Psychiatry202328300212Search in Google Scholar
Wu Y, Hang Z, Lei T, Du H. Intestinal flora affect Alzheimer's disease by regulating endogenous hormones. Neurochem Res. 2022; 47:3565–82.WuYHangZLeiTDuHIntestinal flora affect Alzheimer's disease by regulating endogenous hormonesNeurochem Res202247356582Search in Google Scholar
Sarubbo F, Cavallucci V, Pani G. The Influence of gut microbiota on neurogenesis: evidence and hopes. Cells. 2022; 11:382. doi: 10.3390/cells11030382SarubboFCavallucciVPaniGThe Influence of gut microbiota on neurogenesis: evidence and hopesCells20221138210.3390/cells11030382Open DOISearch in Google Scholar
Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 exposure and its possible role in neurodegenerative and mental disorders. Hum Exp Toxicol. 2023; 42:9603271231191436. doi: 10.1177/09603271231191436LiuXQHuangJSongCZhangTLLiuYPYuLNeurodevelopmental toxicity induced by PM2.5 exposure and its possible role in neurodegenerative and mental disordersHum Exp Toxicol202342960327123119143610.1177/09603271231191436Open DOISearch in Google Scholar
Wang L, Cai Y, Garssen J, Henricks PAJ, Folkerts G, Braber S. The bidirectional gut-lung axis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2023; 207:1145–60.WangLCaiYGarssenJHenricksPAJFolkertsGBraberSThe bidirectional gut-lung axis in chronic obstructive pulmonary diseaseAm J Respir Crit Care Med2023207114560Search in Google Scholar
Qu L, Cheng Q, Wang Y, Mu H, Zhang Y. COPD and gut-lung axis: how microbiota and host inflammasome influence COPD and related therapeutics. Front Microbiol. 2022; 13:868086. doi: 10.3389/fmicb.2022.868086QuLChengQWangYMuHZhangYCOPD and gut-lung axis: how microbiota and host inflammasome influence COPD and related therapeuticsFront Microbiol20221386808610.3389/fmicb.2022.868086Open DOISearch in Google Scholar
Calderón-Garcidueñas L, González-Maciel A, Kulesza RJ, González-González LO, Reynoso-Robles R, Mukherjee PS, et al. Air pollution, combustion and friction derived nanoparticles, and Alzheimer's disease in urban children and young adults. J Alzheimers Dis. 2019; 70:343–60.Calderón-GarcidueñasLGonzález-MacielAKuleszaRJGonzález-GonzálezLOReynoso-RoblesRMukherjeePSAir pollution, combustion and friction derived nanoparticles, and Alzheimer's disease in urban children and young adultsJ Alzheimers Dis20197034360Search in Google Scholar
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Kulesza RJ, Mukherjee PS, Torres-Jardón R, et al. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. Environ Res. 2018; 166:348–62.Calderón-GarcidueñasLGonzález-MacielAReynoso-RoblesRKuleszaRJMukherjeePSTorres-JardónRAlzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathologyEnviron Res201816634862Search in Google Scholar
Maher BA, Ahmed IA, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, et al. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A. 2016; 113:10797–801.MaherBAAhmedIAKarloukovskiVMacLarenDAFouldsPGAllsopDMagnetite pollution nanoparticles in the human brainProc Natl Acad Sci U S A201611310797801Search in Google Scholar
Calderón-Garcidueñas L, Gónzalez-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Mukherjee PS, Kulesza RJ, et al. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of age. Environ Res. 2018; 164:475–87.Calderón-GarcidueñasLGónzalez-MacielAReynoso-RoblesRDelgado-ChávezRMukherjeePSKuleszaRJHallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of ageEnviron Res201816447587Search in Google Scholar
Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009; 32:506–16.BlockMLCalderón-GarcidueñasLAir pollution: mechanisms of neuroinflammation and CNS diseaseTrends Neurosci20093250616Search in Google Scholar
Alhussaini AR, Aljabri MR, Al-Harbi ZT, Abdulrahman Almohammadi G, Al-Harbi TM, Bashir S. Air pollution and its adverse effects on the central nervous system. Cureus. 2023; 15:e38927. doi: 10.7759/cureus.38927AlhussainiARAljabriMRAl-HarbiZTAbdulrahman AlmohammadiGAl-HarbiTMBashirSAir pollution and its adverse effects on the central nervous systemCureus202315e3892710.7759/cureus.38927Open DOISearch in Google Scholar
Levesque S, Surace MJ, McDonald J, Block ML. Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 2011; 8:105. doi: 10.1186/1742-2094-8-105LevesqueSSuraceMJMcDonaldJBlockMLAir pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative diseaseJ Neuroinflammation2011810510.1186/1742-2094-8-105Open DOISearch in Google Scholar
Mukherjee A, Agrawal M. A global perspective of fine particulate matter pollution and its health effects. Rev Environ Contam Toxicol. 2018; 244:5–51.MukherjeeAAgrawalMA global perspective of fine particulate matter pollution and its health effectsRev Environ Contam Toxicol2018244551Search in Google Scholar
Xu Z, Wu H, Zhang H, Bai J, Zhang Z. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J Appl Toxicol. 2020; 40:1210–8.XuZWuHZhangHBaiJZhangZInterleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μmJ Appl Toxicol20204012108Search in Google Scholar
Xu X, Xu H, Qimuge A, Liu S, Wang H, Hu M, et al. MAPK/AP-1 pathway activation mediates AT1R upregulation and vascular endothelial cells dysfunction under PM2.5 exposure. Ecotoxicol Environ Saf. 2019; 170:188–94.XuXXuHQimugeALiuSWangHHuMMAPK/AP-1 pathway activation mediates AT1R upregulation and vascular endothelial cells dysfunction under PM2.5 exposureEcotoxicol Environ Saf201917018894Search in Google Scholar
Luo CM, Feng J, Zhang J, Gao C, Cao JY, Zhou GL, et al. 1,25-Vitamin D3 protects against cooking oil fumes-derived M2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytes. Ecotoxicol Environ Saf. 2019; 179:249–56.LuoCMFengJZhangJGaoCCaoJYZhouGL1,25-Vitamin D3 protects against cooking oil fumes-derived M2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytesEcotoxicol Environ Saf201917924956Search in Google Scholar
Zheng R, Tao L, Jian H, Chang Y, Cheng Y, Feng Y, et al. NLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matter. Ecotoxicol Environ Saf. 2018; 163:612–9.ZhengRTaoLJianHChangYChengYFengYNLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matterEcotoxicol Environ Saf20181636129Search in Google Scholar
Bekki K, Ito T, Yoshida Y, He C, Arashidani K, He M, et al. M2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ Toxicol Pharmacol. 2016; 45:362–9.BekkiKItoTYoshidaYHeCArashidaniKHeMM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathwaysEnviron Toxicol Pharmacol2016453629Search in Google Scholar
Miyata R, van Eeden SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol. 2011; 257:209–26.MiyataRvan EedenSFThe innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matterToxicol Appl Pharmacol201125720926Search in Google Scholar
Fitch MN, Phillippi D, Zhang Y, Lucero J, Pandey RS, Liu J, et al. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in apolipoprotein E knockout mice. Environ Res. 2020; 181:108913. doi: 10.1016/j.envres.2019.108913FitchMNPhillippiDZhangYLuceroJPandeyRSLiuJEffects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in apolipoprotein E knockout miceEnviron Res202018110891310.1016/j.envres.2019.108913Open DOISearch in Google Scholar
Song J, Han K, Wang Y, Qu R, Liu Y, Wang S, et al. Microglial activation and oxidative stress in PM2.5-induced neurodegenerative disorders. Antioxidants (Basel). 2022; 11:1482. doi: 10.3390/antiox11081482SongJHanKWangYQuRLiuYWangSMicroglial activation and oxidative stress in PM2.5-induced neurodegenerative disordersAntioxidants (Basel)202211148210.3390/antiox11081482Open DOISearch in Google Scholar
Zhu X, Ji X, Shou Y, Huang Y, Hu Y, Wang H. Recent advances in understanding the mechanisms of PM2.5-mediated neurodegenerative diseases. Toxicol Lett. 2020; 329:31–7.ZhuXJiXShouYHuangYHuYWangHRecent advances in understanding the mechanisms of PM2.5-mediated neurodegenerative diseasesToxicol Lett2020329317Search in Google Scholar
Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H. A review of the possible associations between ambient M2.5 exposures and the development of Alzheimer's disease. Ecotoxicol Environ Saf. 2019; 174:344–52.ShouYHuangYZhuXLiuCHuYWangHA review of the possible associations between ambient M2.5 exposures and the development of Alzheimer's diseaseEcotoxicol Environ Saf201917434452Search in Google Scholar
Wang BR, Shi JQ, Ge NN, Ou Z, Tian YY, Jiang T, et al. PM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer's disease. J Neuroinflammation. 2018; 15:132. doi: 10.1186/s12974-018-1178-5WangBRShiJQGeNNOuZTianYYJiangTPM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer's diseaseJ Neuroinflammation20181513210.1186/s12974-018-1178-5Open DOISearch in Google Scholar
Zhu X, Xia Y, Wang H, Shi L, Yin H, Gu M, et al. PM2.5 induced neurotoxicity through unbalancing vitamin B12 metabolism by gut microbiota disturbance. Gut Microbes. 2023; 15:2267186. doi: 10.1080/19490976.2023.2267186ZhuXXiaYWangHShiLYinHGuMPM2.5 induced neurotoxicity through unbalancing vitamin B12 metabolism by gut microbiota disturbanceGut Microbes202315226718610.1080/19490976.2023.2267186Open DOISearch in Google Scholar
Shou Y, Zhu X, Zhu D, Yin H, Shi Y, Chen M, et al. Ambient M2.5 chronic exposure leads to cognitive decline in mice: from pulmonary to neuronal inflammation. Toxicol Lett. 2020; 331:208–17.ShouYZhuXZhuDYinHShiYChenMAmbient M2.5 chronic exposure leads to cognitive decline in mice: from pulmonary to neuronal inflammationToxicol Lett202033120817Search in Google Scholar
Kang YJ, Tan HY, Lee CY, Cho H. An air particulate pollutant induces neuroinflammation and neurodegeneration in human brain models. Adv Sci (Weinh). 2021; 8:e2101251. doi: 10.1002/advs.202101251KangYJTanHYLeeCYChoHAn air particulate pollutant induces neuroinflammation and neurodegeneration in human brain modelsAdv Sci (Weinh)20218e210125110.1002/advs.202101251Open DOISearch in Google Scholar
Li W, Lin G, Xiao Z, Zhang Y, Li B, Zhou Y, et al. A review of respirable fine particulate matter (PM2.5)-induced brain damage. Front Mol Neurosci. 2022; 15:967174. doi: 10.3389/fnmol.2022.967174LiWLinGXiaoZZhangYLiBZhouYA review of respirable fine particulate matter (PM2.5)-induced brain damageFront Mol Neurosci20221596717410.3389/fnmol.2022.967174Open DOISearch in Google Scholar
Liu X, Qian X, Xing J, Wang J, Sun Y, Wang Q, et al. Particulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in mice. Toxicol Sci. 2018; 164:278–88.LiuXQianXXingJWangJSunYWangQParticulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in miceToxicol Sci201816427888Search in Google Scholar
Ren H, Lu J, Ning J, Su X, Tong Y, Chen J, et al. Exposure to fine particulate matter induces self-recovery and susceptibility of oxidative stress and inflammation in rat lungs. Environ Sci Pollut Res Int. 2020; 27:40262–76.RenHLuJNingJSuXTongYChenJExposure to fine particulate matter induces self-recovery and susceptibility of oxidative stress and inflammation in rat lungsEnviron Sci Pollut Res Int2020274026276Search in Google Scholar
Ji X, Yue H, Ku T, Zhang Y, Yun Y, Li G, et al. Histone modification in the lung injury and recovery of mice in response to M2.5 exposure. Chemosphere. 2019; 220:127–36.JiXYueHKuTZhangYYunYLiGHistone modification in the lung injury and recovery of mice in response to M2.5 exposureChemosphere201922012736Search in Google Scholar
Li Y, Lin B, Hao D, Du Z, Wang Q, Song Z, et al. Short-term PM2.5 exposure induces transient lung injury and repair. J Hazard Mater. 2023; 459:132227. doi: 10.1016/j.jhazmat.2023.132227LiYLinBHaoDDuZWangQSongZShort-term PM2.5 exposure induces transient lung injury and repairJ Hazard Mater202345913222710.1016/j.jhazmat.2023.132227Open DOISearch in Google Scholar
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: recent insights. Redox Biol. 2020; 34:101545. doi: 10.1016/j.redox.2020.101545GangwarRSBevanGHPalanivelRDasLRajagopalanSOxidative stress pathways of air pollution mediated toxicity: recent insightsRedox Biol20203410154510.1016/j.redox.2020.101545Open DOISearch in Google Scholar
Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxid Redox Signal. 2018; 28:797–818.RaoXZhongJBrookRDRajagopalanSEffect of particulate matter air pollution on cardiovascular oxidative stress pathwaysAntioxid Redox Signal201828797818Search in Google Scholar
Zhong H, Lin H, Pang Q, Zhuang J, Liu X, Li X, et al. Macrophage ICAM-1 functions as a regulator of phagocytosis in LPS induced endotoxemia. Inflamm Res. 2021; 70:193–203.ZhongHLinHPangQZhuangJLiuXLiXMacrophage ICAM-1 functions as a regulator of phagocytosis in LPS induced endotoxemiaInflamm Res202170193203Search in Google Scholar
Sulimai N, Brown J, Lominadze D. Fibrinogen interaction with astrocyte ICAM-1 and PrPC results in the generation of ROS and neuronal death. Int J Mol Sci. 2021; 22:2391. doi: 10.3390/ijms22052391SulimaiNBrownJLominadzeDFibrinogen interaction with astrocyte ICAM-1 and PrPC results in the generation of ROS and neuronal deathInt J Mol Sci202122239110.3390/ijms22052391Open DOISearch in Google Scholar
Lee HS, Jun JH, Jung EH, Koo BA, Kim YS. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation. Molecules. 2014; 19:12150–72.LeeHSJunJHJungEHKooBAKimYSEpigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activationMolecules2014191215072Search in Google Scholar
Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim Biophys Acta. 2008; 1783:886–95.KimSRBaeYHBaeSKChoiKSYoonKHKooTHVisfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cellsBiochim Biophys Acta2008178388695Search in Google Scholar
Cook-Mills JM. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cell Mol Biol (Noisy-le-grand). 2006; 52:8–16.Cook-MillsJMHydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migrationCell Mol Biol (Noisy-le-grand)200652816Search in Google Scholar
Shan H, Li X, Ouyang C, Ke H, Yu X, Tan J, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. Ecotoxicol Environ Saf. 2022; 231:113170. doi: 10.1016/j.ecoenv.2022.113170ShanHLiXOuyangCKeHYuXTanJSalidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial functionEcotoxicol Environ Saf202223111317010.1016/j.ecoenv.2022.113170Open DOISearch in Google Scholar
Grevendonk L, Janssen BG, Vanpoucke C, Lefebvre W, Hoxha M, Bollati V, et al. Mitochondrial oxidative DNA damage and exposure to particulate air pollution in mother-newborn pairs. Environ Health. 2016; 15:10. doi: 10.1186/s12940-016-0095-2GrevendonkLJanssenBGVanpouckeCLefebvreWHoxhaMBollatiVMitochondrial oxidative DNA damage and exposure to particulate air pollution in mother-newborn pairsEnviron Health2016151010.1186/s12940-016-0095-2Open DOISearch in Google Scholar
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res. 2014; 762:133–66.MøllerPDanielsenPHKarottkiDGJantzenKRoursgaardMKlingbergHOxidative stress and inflammation generated DNA damage by exposure to air pollution particlesMutat Res Rev Mutat Res201476213366Search in Google Scholar
Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011; 2011:487074. doi: 10.1155/2011/487074LodoviciMBigagliEOxidative stress and air pollution exposureJ Toxicol2011201148707410.1155/2011/487074Open DOISearch in Google Scholar
Fan X, Dong T, Yan K, Ci X, Peng L. PM2.5 increases susceptibility to acute exacerbation of COPD via NOX4/Nrf2 redox imbalance-mediated mitophagy. Redox Biol. 2023; 59:102587. doi: 10.1016/j.redox.2022.102587FanXDongTYanKCiXPengLPM2.5 increases susceptibility to acute exacerbation of COPD via NOX4/Nrf2 redox imbalance-mediated mitophagyRedox Biol20235910258710.1016/j.redox.2022.102587Open DOISearch in Google Scholar
Ji X, Li C, Zhu X, Yu W, Cai Y, Zhu X, et al. Methylcobalamin alleviates neuronal apoptosis and cognitive decline induced by M2.5 exposure in mice. J Alzheimers Dis. 2022; 86:1783–96.JiXLiCZhuXYuWCaiYZhuXMethylcobalamin alleviates neuronal apoptosis and cognitive decline induced by M2.5 exposure in miceJ Alzheimers Dis202286178396Search in Google Scholar
Gałuszka-Bulaga A, Tkacz K, Węglarczyk K, Siedlar M, Baran J. Air pollution induces pyroptosis of human monocytes through activation of inflammasomes and Caspase-3-dependent pathways. J Inflamm (Lond). 2023; 20:26. doi: 10.1186/s12950-023-00353-yGałuszka-BulagaATkaczKWęglarczykKSiedlarMBaranJAir pollution induces pyroptosis of human monocytes through activation of inflammasomes and Caspase-3-dependent pathwaysJ Inflamm (Lond)2023202610.1186/s12950-023-00353-yOpen DOISearch in Google Scholar
Song Q, Zhou ZJ, Cai S, Chen Y, Chen P. Oxidative stress links the tumour suppressor 53 with cell apoptosis induced by cigarette smoke. Int J Environ Health Res. 2022; 32:1745–55.SongQZhouZJCaiSChenYChenPOxidative stress links the tumour suppressor 53 with cell apoptosis induced by cigarette smokeInt J Environ Health Res202232174555Search in Google Scholar
Wang W, Deng Z, Feng Y, Liao F, Zhou F, Feng S, et al. M2.5 induced apoptosis in endothelial cell through the activation of the p53-bax-caspase pathway. Chemosphere. 2017; 177:135–43.WangWDengZFengYLiaoFZhouFFengSM2.5 induced apoptosis in endothelial cell through the activation of the p53-bax-caspase pathwayChemosphere201717713543Search in Google Scholar
Wang Y, Li C, Zhang X, Kang X, Li Y, Zhang W, et al. Exposure to PM2.5 aggravates Parkinson's disease via inhibition of autophagy and mitophagy pathway. Toxicology. 2021; 456:152770. doi: 10.1016/j.tox.2021.152770WangYLiCZhangXKangXLiYZhangWExposure to PM2.5 aggravates Parkinson's disease via inhibition of autophagy and mitophagy pathwayToxicology202145615277010.1016/j.tox.2021.152770Open DOISearch in Google Scholar
Li Z, Tian F, Ban H, Xia S, Cheng L, Ren X, et al. Energy metabolism disorders and oxidative stress in the SH-SY5Y cells following M2.5 air pollution exposure. Toxicol Lett. 2022; 369:25–33.LiZTianFBanHXiaSChengLRenXEnergy metabolism disorders and oxidative stress in the SH-SY5Y cells following M2.5 air pollution exposureToxicol Lett20223692533Search in Google Scholar
Yuan J, Mo L, Mo Y, Zhang Y, Zhang Y, Zhang Q. A protective role of autophagy in fine airborne particulate matter-induced apoptosis in LN-229 cells. Toxicology. 2022; 477:153271. doi: 10.1016/j.tox.2022.153271YuanJMoLMoYZhangYZhangYZhangQA protective role of autophagy in fine airborne particulate matter-induced apoptosis in LN-229 cellsToxicology202247715327110.1016/j.tox.2022.153271Open DOISearch in Google Scholar
Jiang M, Li D, Piao J, Li Y, Chen L, Li J, et al. Nrf2 modulated the restriction of lung function via impairment of intrinsic autophagy upon real-ambient PM2.5 exposure. J Hazard Mater. 2021; 408:124903. doi: 10.1016/j.jhazmat.2020.124903JiangMLiDPiaoJLiYChenLLiJNrf2 modulated the restriction of lung function via impairment of intrinsic autophagy upon real-ambient PM2.5 exposureJ Hazard Mater202140812490310.1016/j.jhazmat.2020.124903Open DOISearch in Google Scholar
Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, et al. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol. 2018; 15:44. doi: 10.1186/s12989-018-0281-1ShihCHChenJKKuoLWChoKHHsiaoTCLinZWChronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult ratsPart Fibre Toxicol2018154410.1186/s12989-018-0281-1Open DOISearch in Google Scholar
Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, et al. M2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro. 2013; 27:1762–70.DengXZhangFRuiWLongFWangLFengZM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cellsToxicol In Vitro201327176270Search in Google Scholar
Qiu YN, Wang GH, Zhou F, Hao JJ, Tian L, Guan LF, et al. M2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol Environ Saf. 2019; 167:178–87.QiuYNWangGHZhouFHaoJJTianLGuanLFM2.5 induces liver fibrosis via triggering ROS-mediated mitophagyEcotoxicol Environ Saf201916717887Search in Google Scholar
De Nys S, Duca RC, Nawrot T, Hoet P, Van Meerbeek B, Van Landuyt KL, et al. Temporal variability of global DNA methylation and hydroxymethylation in buccal cells of healthy adults: association with air pollution. Environ Int. 2018; 111:301–8.De NysSDucaRCNawrotTHoetPVan MeerbeekBVan LanduytKLTemporal variability of global DNA methylation and hydroxymethylation in buccal cells of healthy adults: association with air pollutionEnviron Int20181113018Search in Google Scholar
Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, et al. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics. 2017; 9:65. doi: 10.1186/s13148-017-0364-0Lovinsky-DesirSJungKHJezioroJRTorroneDZde Planell-SaguerMYanBPhysical activity, black carbon exposure, and DNA methylation in the FOXP3 promoterClin Epigenetics201796510.1186/s13148-017-0364-0Open DOISearch in Google Scholar
Bai J, Tang L, Luo Y, Han Z, Li C, Sun Y, et al. Vitamin B complex blocks the dust fall M2.5 -induced acute lung injury through DNA methylation in rats. Environ Toxicol. 2023; 38:403–14.BaiJTangLLuoYHanZLiCSunYVitamin B complex blocks the dust fall M2.5 -induced acute lung injury through DNA methylation in ratsEnviron Toxicol20233840314Search in Google Scholar
Wu M, Jiang M, Ding H, Tang S, Li D, Pi J, et al. Nrf2-/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM2.5 exposure. Front Genet. 2023; 14:1144903. doi: 10.3389/fgene.2023.1144903WuMJiangMDingHTangSLiDPiJNrf2-/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM2.5 exposureFront Genet202314114490310.3389/fgene.2023.1144903Open DOISearch in Google Scholar
Zhou W, Tian D, He J, Wang Y, Zhang L, Cui L, et al. Repeated M2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget. 2016; 7:20691–703.ZhouWTianDHeJWangYZhangLCuiLRepeated M2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylationOncotarget2016720691703Search in Google Scholar
Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, et al. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis. 2011; 17:1955–65.SaitoSKatoJHiraokaSHoriiJSuzukiHHigashiRDNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory statusInflamm Bowel Dis201117195565Search in Google Scholar
Legaki E, Gazouli M. Influence of environmental factors in the development of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther. 2016; 7:112–25.LegakiEGazouliMInfluence of environmental factors in the development of inflammatory bowel diseasesWorld J Gastrointest Pharmacol Ther2016711225Search in Google Scholar
Karatzas PS, Mantzaris GJ, Safioleas M, Gazouli M. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine (Baltimore). 2014; 93:e309. doi: 10.1097/MD.0000000000000309KaratzasPSMantzarisGJSafioleasMGazouliMDNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel diseaseMedicine (Baltimore)201493e30910.1097/MD.0000000000000309Open DOISearch in Google Scholar
Li Z, Liang D, Ebelt S, Gearing M, Kobor MS, Konwar C, et al. Differential DNA methylation in the brain as potential mediator of the association between traffic-related M2.5 and neuropathology markers of Alzheimer's disease. Alzheimers Dement. 2024; 20:2538–51.LiZLiangDEbeltSGearingMKoborMSKonwarCDifferential DNA methylation in the brain as potential mediator of the association between traffic-related M2.5 and neuropathology markers of Alzheimer's diseaseAlzheimers Dement202420253851Search in Google Scholar
Shen Y, Liu C, Yang T, Tang Y, Shen Y, Gu Y. Transcriptome characterization of human gingival mesenchymal and periodontal ligament stem cells in response to electronic-cigarettes. Environ Pollut. 2023; 323:121307. doi: 10.1016/j.envpol.2023.121307ShenYLiuCYangTTangYShenYGuYTranscriptome characterization of human gingival mesenchymal and periodontal ligament stem cells in response to electronic-cigarettesEnviron Pollut202332312130710.1016/j.envpol.2023.121307Open DOISearch in Google Scholar
Mourão CF, Shibli JA. What is the impact of e-cigarettes on periodontal stem cells as revealed by transcriptomic analyses? Evid Based Dent. 2023; 24:168–9.MourãoCFShibliJAWhat is the impact of e-cigarettes on periodontal stem cells as revealed by transcriptomic analyses?Evid Based Dent2023241689Search in Google Scholar
Han X, Tian M, Shliaha PV, Zhang J, Jiang S, Nan B, et al. Real-world particulate matters induce lung toxicity in rats fed with a high-fat diet: evidence of histone modifications. J Hazard Mater. 2021; 416:126182. doi: 10.1016/j.jhazmat.2021.126182HanXTianMShliahaPVZhangJJiangSNanBReal-world particulate matters induce lung toxicity in rats fed with a high-fat diet: evidence of histone modificationsJ Hazard Mater202141612618210.1016/j.jhazmat.2021.126182Open DOISearch in Google Scholar
Jiang Y, Zhao Y, Wang Q, Chen H, Zhou X. Fine particulate matter exposure promotes M2 macrophage polarization through inhibiting histone deacetylase 2 in the pathogenesis of chronic obstructive pulmonary disease. Ann Transl Med. 2020; 8:1303. doi: 10.21037/atm-20-6653JiangYZhaoYWangQChenHZhouXFine particulate matter exposure promotes M2 macrophage polarization through inhibiting histone deacetylase 2 in the pathogenesis of chronic obstructive pulmonary diseaseAnn Transl Med20208130310.21037/atm-20-6653Open DOISearch in Google Scholar
Chen S, Wu M, Xiong Z, Huang J, Lv Y, Li Y, et al. Myeloid-specific SIRT6 deletion protects against particulate matter (M2.5)-induced airway inflammation. Int J Chron Obstruct Pulmon Dis. 2023; 18:1135–44.ChenSWuMXiongZHuangJLvYLiYMyeloid-specific SIRT6 deletion protects against particulate matter (M2.5)-induced airway inflammationInt J Chron Obstruct Pulmon Dis202318113544Search in Google Scholar
Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, et al. H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution. Environ Toxicol Pharmacol. 2016; 42:170–5.DingRJinYLiuXZhuZZhangYWangTH3K9 acetylation change patterns in rats after exposure to traffic-related air pollutionEnviron Toxicol Pharmacol2016421705Search in Google Scholar
Hou T, Liao J, Zhang C, Sun C, Li X, Wang G. Elevated expression of miR-146, miR-139 and miR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in mice. Int Immunopharmacol. 2018; 54:68–77.HouTLiaoJZhangCSunCLiXWangGElevated expression of miR-146, miR-139 and miR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in miceInt Immunopharmacol2018546877Search in Google Scholar
Park S, Kim M, Park M, Jin Y, Lee SJ, Lee H. Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. J Hazard Mater. 2023; 445:130466. doi: 10.1016/j.jhazmat.2022.130466ParkSKimMParkMJinYLeeSJLeeHSpecific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulationJ Hazard Mater202344513046610.1016/j.jhazmat.2022.130466Open DOISearch in Google Scholar
Liu L, Wan C, Zhang W, Guan L, Tian G, Zhang F, et al. MiR-146a regulates M1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells. Environ Toxicol. 2018; 33:743–51.LiuLWanCZhangWGuanLTianGZhangFMiR-146a regulates M1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cellsEnviron Toxicol20183374351Search in Google Scholar
Jiang P, Hao S, Xie L, Xiang G, Hu W, Wu Q, et al. LncRNA NEAT1 contributes to the acquisition of a tumor like-phenotype induced by PM 2.5 in lung bronchial epithelial cells via HIF-1α activation. Environ Sci Pollut Res Int. 2021; 28:43382–93.JiangPHaoSXieLXiangGHuWWuQLncRNA NEAT1 contributes to the acquisition of a tumor like-phenotype induced by PM 2.5 in lung bronchial epithelial cells via HIF-1α activationEnviron Sci Pollut Res Int2021284338293Search in Google Scholar
Fu Y, Li B, Yun J, Xu J, Meng Q, Li X, et al. lncRNA SOX2-OT ceRNA network enhances the malignancy of long-term PM2.5-exposed human bronchial epithelia. Ecotoxicol Environ Saf. 2021; 217:112242. doi: 10.1016/j.ecoenv.2021.112242FuYLiBYunJXuJMengQLiXlncRNA SOX2-OT ceRNA network enhances the malignancy of long-term PM2.5-exposed human bronchial epitheliaEcotoxicol Environ Saf202121711224210.1016/j.ecoenv.2021.112242Open DOISearch in Google Scholar
Ning J, Li P, Zhang B, Han B, Su X, Wang Q, et al. miRNAs deregulation in serum of mice is associated with lung cancer related pathway deregulation induced by PM2.5. Environ Pollut. 2019; 254:112875. doi: 10.1016/j.envpol.2019.07.043NingJLiPZhangBHanBSuXWangQmiRNAs deregulation in serum of mice is associated with lung cancer related pathway deregulation induced by PM2.5Environ Pollut201925411287510.1016/j.envpol.2019.07.043Open DOISearch in Google Scholar
Sanchez B, Zhou X, Gardiner AS, Herbert G, Lucas S, Morishita M, et al. Serum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo Nation. Part Fibre Toxicol. 2020; 17:29. doi: 10.1186/s12989-020-00361-3SanchezBZhouXGardinerASHerbertGLucasSMorishitaMSerum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo NationPart Fibre Toxicol2020172910.1186/s12989-020-00361-3Open DOISearch in Google Scholar
Fu P, Zhao Y, Dong C, Cai Z, Li R, Yung KKL. An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world M2.5 exposure. J Environ Sci (China). 2022; 122:25–40.FuPZhaoYDongCCaiZLiRYungKKLAn integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world M2.5 exposureJ Environ Sci (China)20221222540Search in Google Scholar
Ku T, Li B, Gao R, Zhang Y, Yan W, Ji X, et al. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspiration. Part Fibre Toxicol. 2017; 14:34. doi: 10.1186/s12989-017-0215-3KuTLiBGaoRZhangYYanWJiXNF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspirationPart Fibre Toxicol2017143410.1186/s12989-017-0215-3Open DOISearch in Google Scholar
Chao MW, Yang CH, Lin PT, Yang YH, Chuang YC, Chung MC, et al. Exposure to M2.5 causes genetic changes in fetal rat cerebral cortex and hippocampus. Environ Toxicol. 2017; 32:1412–25.ChaoMWYangCHLinPTYangYHChuangYCChungMCExposure to M2.5 causes genetic changes in fetal rat cerebral cortex and hippocampusEnviron Toxicol201732141225Search in Google Scholar