Open Access

Lateral flow assay: a promising rapid point-of-care testing tool for infections and non-communicable diseases


Cite

Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008; 10:107–44. YagerP DomingoGJ GerdesJ. Point-of-care diagnostics for global health Annu Rev Biomed Eng. 2008 10 107 44 Search in Google Scholar

Ahsan W, Alhazmi HA, Patel KS, Mangla B, Al Bratty M, Javed S, et al. Recent advancements in the diagnosis, prevention, and prospective drug therapy of COVID-19. Front Public Heal. 2020; 8:384. doi: 10.3389/fpubh.2020.00384 AhsanW AlhazmiHA PatelKS ManglaB Al BrattyM JavedS Recent advancements in the diagnosis, prevention, and prospective drug therapy of COVID-19 Front Public Heal. 2020 8 384 10.3389/fpubh.2020.00384 Open DOISearch in Google Scholar

Bunn TW, Sikarwar A. Diagnostics: conventional versus modern methods. J Adv Med Pharm Sci. 2016; 8:1–7. BunnTW SikarwarA. Diagnostics: conventional versus modern methods J Adv Med Pharm Sci. 2016 8 1 7 Search in Google Scholar

Franco-Duarte R, Černáková L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, et al. Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms. 2019; 7:130. doi: 10.3390/microorganisms7050130 Franco-DuarteR ČernákováL KadamS KaushikKS SalehiB BevilacquaA Advances in chemical and biological methods to identify microorganisms—from past to present Microorganisms. 2019 7 130 10.3390/microorganisms7050130 Open DOISearch in Google Scholar

Weile J, Knabbe C. Current applications and future trends of molecular diagnostics in clinical bacteriology. Anal Bioanal Chem. 2009; 394:731–42. WeileJ KnabbeC. Current applications and future trends of molecular diagnostics in clinical bacteriology Anal Bioanal Chem. 2009 394 731 42 Search in Google Scholar

Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev. 2007; 20:49–78. LelandDS GinocchioCC. Role of cell culture for virus detection in the age of technology Clin Microbiol Rev. 2007 20 49 78 Search in Google Scholar

Warsinke A. Point-of-care testing of proteins. Anal Bioanal Chem. 2009; 393:1393–405. WarsinkeA. Point-of-care testing of proteins Anal Bioanal Chem. 2009 393 1393 405 Search in Google Scholar

Patrinos GP, Danielson PB, Ansorge WJ. Molecular diagnostics: past, present, and future. 3rd ed. Elsevier Ltd (Philadelphia, PA, USA; 2017, p. 1–11 PatrinosGP DanielsonPB AnsorgeWJ. Molecular diagnostics: past, present, and future 3rd ed. Elsevier Ltd Philadelphia, PA, USA 2017 1 11 Search in Google Scholar

Raghavendra P, Pullaiah T. Future of cellular and molecular diagnostics. 2018; 8:203–70. doi: 10.1016/b978-0-12-813679-9.00008-7 RaghavendraP PullaiahT. Future of cellular and molecular diagnostics 2018 8 203 70 10.1016/b978-0-12-813679-9.00008-7 Open DOISearch in Google Scholar

Choi JR, Yong KW, Choi JY, Cowie AC. Emerging point-of-care technologies for food safety analysis. Sensors (Basel, Switzerland). 2019; 19:817. doi: 10.3390/s19040817 ChoiJR YongKW ChoiJY CowieAC. Emerging point-of-care technologies for food safety analysis Sensors (Basel, Switzerland). 2019 19 817 10.3390/s19040817 Open DOISearch in Google Scholar

Charlermroj R, Phuengwas S, Makornwattana M, Sooksimuang T, Sahasithiwat S, Panchan W, et al. Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta. 2021; 233:122540. doi: 10.1016/j.talanta.2021.122540 CharlermrojR PhuengwasS MakornwattanaM SooksimuangT SahasithiwatS PanchanW Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins Talanta. 2021 233 122540 10.1016/j.talanta.2021.122540 Open DOISearch in Google Scholar

Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfluidic diagnostic technologies for global public health. Nature. 2006; 442:412–8. YagerP EdwardsT FuE HeltonK NelsonK TamMR WeiglBH. Microfluidic diagnostic technologies for global public health Nature. 2006 442 412 8 Search in Google Scholar

Bouzid D, Zanella MC, Kerneis S, Visseaux B, May L, Schrenzel J, Cattoir V. Rapid diagnostic tests for infectious diseases in the emergency department. Clin Microbiol Infect. 2021; 27:182–91. BouzidD ZanellaMC KerneisS VisseauxB MayL SchrenzelJ CattoirV. Rapid diagnostic tests for infectious diseases in the emergency department Clin Microbiol Infect. 2021 27 182 91 Search in Google Scholar

Napione L. Integrated nanomaterials and nanotechnologies in lateral flow tests for personalized medicine applications. Nanomaterials (Basel). 2021; 11:2362. doi: 10.3390/nano11092362 NapioneL. Integrated nanomaterials and nanotechnologies in lateral flow tests for personalized medicine applications Nanomaterials (Basel). 2021 11 2362 10.3390/nano11092362 Open DOISearch in Google Scholar

Von Lode P. Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin Biochem. 2005; 38:591–606. Von LodeP. Point-of-care immunotesting: approaching the analytical performance of central laboratory methods Clin Biochem. 2005 38 591 606 Search in Google Scholar

Carter DJ, Cary RB. Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography. Nucleic Acids Res. 2007; 35:e74. doi: 10.1093/nar/gkm269 CarterDJ CaryRB. Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography Nucleic Acids Res. 2007 35 e74 10.1093/nar/gkm269 Open DOISearch in Google Scholar

Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013; 13:2210–51. YetisenAK AkramMS LoweCR. Paper-based microfluidic point-of-care diagnostic devices Lab Chip. 2013 13 2210 51 Search in Google Scholar

John AS, Price CP. Existing and emerging technologies for point-of-care testing. Clin Biochem Rev. 2014; 35:155–67. JohnAS PriceCP. Existing and emerging technologies for point-of-care testing Clin Biochem Rev. 2014 35 155 67 Search in Google Scholar

Kost GJ. Geospatial science and point-of-care testing: creating solutions for population access, emergencies, outbreaks, and disasters. Front Pub Health. 2019; 7:329. doi: 10.3389/fpubh.2019.00329 KostGJ. Geospatial science and point-of-care testing: creating solutions for population access, emergencies, outbreaks, and disasters Front Pub Health. 2019 7 329 10.3389/fpubh.2019.00329 Open DOISearch in Google Scholar

Chen H, Liu K, Li Z, Wang P. Point of care testing for infectious diseases. Clin Chim Acta. 2019; 493:138–47. ChenH LiuK LiZ WangP. Point of care testing for infectious diseases Clin Chim Acta. 2019 493 138 47 Search in Google Scholar

Kim S, Nhem S, Dourng D, Ménard D. Malaria rapid diagnostic test as point-of-care test: study protocol for evaluating the VIKIA® Malaria Ag Pf/Pan. Malar J. 2015; 14:114. doi: 10.1186/s12936-015-0633-3 KimS NhemS DourngD MénardD. Malaria rapid diagnostic test as point-of-care test: study protocol for evaluating the VIKIA® Malaria Ag Pf/Pan Malar J. 2015 14 114 10.1186/s12936-015-0633-3 Open DOISearch in Google Scholar

Lee WG, Kim YG, Chung BG, Demirci U, Khademhosseini A. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev. 2010; 62(4–5):449–57. LeeWG KimYG ChungBG DemirciU KhademhosseiniA. Nano/Microfluidics for diagnosis of infectious diseases in developing countries Adv Drug Deliv Rev. 2010 62 4–5 449 57 Search in Google Scholar

Qiu X, Sokoll L, Yip P, Elliott DJ, Dua R, Mohr P, et al. Comparative evaluation of three FDA-approved HIV Ag/Ab combination tests using a genetically diverse HIV panel and diagnostic specimens. J Clin Virol. 2017; 92:62–8. QiuX SokollL YipP ElliottDJ DuaR MohrP Comparative evaluation of three FDA-approved HIV Ag/Ab combination tests using a genetically diverse HIV panel and diagnostic specimens J Clin Virol. 2017 92 62 8 Search in Google Scholar

Campos NG, Tsu V, Jeronimo J, Mvundura M, Kim JJ. Estimating the value of point-of-care HPV testing in three low- and middle-income countries: a modeling study. BMC Cancer. 2017; 17:791. doi: 10.1186/s12885-017-3786-3 CamposNG TsuV JeronimoJ MvunduraM KimJJ. Estimating the value of point-of-care HPV testing in three low- and middle-income countries: a modeling study BMC Cancer. 2017 17 791 10.1186/s12885-017-3786-3 Open DOISearch in Google Scholar

Broadhurst MJ, Kelly JD, Miller A, Semper A, Bailey D, Groppelli E, et al. ReEBOV antigen rapid test kit for point-of-care and laboratory-based testing for Ebola virus disease: a field validation study. Lancet. 2015; 386:867–74. BroadhurstMJ KellyJD MillerA SemperA BaileyD GroppelliE ReEBOV antigen rapid test kit for point-of-care and laboratory-based testing for Ebola virus disease: a field validation study Lancet. 2015 386 867 74 Search in Google Scholar

Maniki PT, Khan R, Orchard A, De Rapper S, Padayachee N. Promoting the use of point of care testing in non-communicable disease screening among university students. Int J Africa Nurs Sci. 2022; 17:100446. doi: 10.1016/j.ijans.2022.100446 ManikiPT KhanR OrchardA De RapperS PadayacheeN. Promoting the use of point of care testing in non-communicable disease screening among university students Int J Africa Nurs Sci. 2022 17 100446 10.1016/j.ijans.2022.100446 Open DOISearch in Google Scholar

Gbinigie O, Price CP, Heneghan C, Van den Bruel A, Plüddemann A. Creatinine point-of-care testing for detection and monitoring of chronic kidney disease: primary care diagnostic technology update. Br J Gen Pract. 2015; 65:608–9. GbinigieO PriceCP HeneghanC Van den BruelA PlüddemannA. Creatinine point-of-care testing for detection and monitoring of chronic kidney disease: primary care diagnostic technology update Br J Gen Pract. 2015 65 608 9 Search in Google Scholar

Beaney T, Burrell LM, Castillo RR, Charchar FJ, Cro S, Damasceno A, et al. May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the international society of hypertension. Eur Heart J. 2019; 40:2006–17. BeaneyT BurrellLM CastilloRR CharcharFJ CroS DamascenoA May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the international society of hypertension Eur Heart J. 2019 40 2006 17 Search in Google Scholar

Hayes B, Murphy C, Crawley A, O’Kennedy R. Developments in point-of-care diagnostic technology for cancer detection. Diagnostics (Basel). 2018; 8:39. doi: 10.3390/diagnostics8020039 HayesB MurphyC CrawleyA O’KennedyR. Developments in point-of-care diagnostic technology for cancer detection Diagnostics (Basel). 2018 8 39 10.3390/diagnostics8020039 Open DOISearch in Google Scholar

Kristensen T, Rose-Olsen K, Volmar Skovsgaard C. Effects of point-of-care testing in general practice for type 2 diabetes patients on ambulatory visits and hospitalizations. Int J Environ Res Public Health. 2020; 17:6185. doi: 10.3390/ijerph17176185 KristensenT Rose-OlsenK Volmar SkovsgaardC. Effects of point-of-care testing in general practice for type 2 diabetes patients on ambulatory visits and hospitalizations Int J Environ Res Public Health. 2020 17 6185 10.3390/ijerph17176185 Open DOISearch in Google Scholar

Valera E, Jankelow A, Lim J, Kindratenko V, Ganguli A, White K, et al. COVID-19 point-of-care diagnostics: present and future. ACS Nano. 2021; 15:7899–906. ValeraE JankelowA LimJ KindratenkoV GanguliA WhiteK COVID-19 point-of-care diagnostics: present and future ACS Nano. 2021 15 7899 906 Search in Google Scholar

Kierkegaard P, McLister A, Buckle P. Rapid point-of-care testing for COVID-19: quality of supportive information for lateral flow serology assays. BMJ Open. 2021; 11:e047163. doi: 10.1136/bmjopen-2020-047163 KierkegaardP McListerA BuckleP. Rapid point-of-care testing for COVID-19: quality of supportive information for lateral flow serology assays BMJ Open. 2021 11 e047163 10.1136/bmjopen-2020-047163 Open DOISearch in Google Scholar

Nilghaz A, Wicaksono DH, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012; 12:209–18. NilghazA WicaksonoDH GustionoD Abdul MajidFA SupriyantoE Abdul KadirMR. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique Lab Chip. 2012 12 209 18 Search in Google Scholar

Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014; 54:585–97. HuJ WangS WangL LiF Pingguan-MurphyB LuTJ XuF. Advances in paper-based point-of-care diagnostics Biosens Bioelectron. 2014 54 585 97 Search in Google Scholar

Sharma S, Zapatero-Rodríguez J, Estrela P, O’Kennedy R. Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors (Basel). 2015; 5:577–601. SharmaS Zapatero-RodríguezJ EstrelaP O’KennedyR. Point-of-care diagnostics in low resource settings: present status and future role of microfluidics Biosensors (Basel). 2015 5 577 601 Search in Google Scholar

Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Analyt Chem. 2011; 30:887–98. LuppaPB MüllerC SchlichtigerA SchlebuschH. Point-of-care testing (POCT): current techniques and future perspectives Trends Analyt Chem. 2011 30 887 98 Search in Google Scholar

Townsend A, Rijal P, Xiao J, Tan TK, Huang KA, Schimanski L, et al. A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nat Commun. 2021; 12:1951. doi: 10.1038/s41467-021-22045-y TownsendA RijalP XiaoJ TanTK HuangKA SchimanskiL A haemagglutination test for rapid detection of antibodies to SARS-CoV-2 Nat Commun. 2021 12 1951 10.1038/s41467-021-22045-y Open DOISearch in Google Scholar

Wood JR, Kaminski BM, Kollman C, Beck RW, Hall CA, Yun JP, et al. Accuracy and precision of the axis-shield afinion hemoglobin A1c measurement device. J Diabetes Sci Technol. 2012; 6:380–6. WoodJR KaminskiBM KollmanC BeckRW HallCA YunJP Accuracy and precision of the axis-shield afinion hemoglobin A1c measurement device J Diabetes Sci Technol. 2012 6 380 6 Search in Google Scholar

Stern D, Olson VA, Smith SK, Pietraszczyk M, Miller L, Miethe P, et al. Rapid and sensitive point-of-care detection of Orthopox-viruses by ABICAP immunofiltration. Virol J. 2016; 13:207. doi: 10.1186/s12985-016-0665-5 SternD OlsonVA SmithSK PietraszczykM MillerL MietheP Rapid and sensitive point-of-care detection of Orthopox-viruses by ABICAP immunofiltration Virol J. 2016 13 207 10.1186/s12985-016-0665-5 Open DOISearch in Google Scholar

Jiang X, Lillehoj PB. Lateral flow immunochromatographic assay on a single piece of paper. Analyst. 2021; 146:1084–90. JiangX LillehojPB. Lateral flow immunochromatographic assay on a single piece of paper Analyst. 2021 146 1084 90 Search in Google Scholar

Prasad S. Nanobiosensors: the future for diagnosis of disease? Nanobiosensors Dis Diagn. 2014; 2014:1–10. PrasadS. Nanobiosensors: the future for diagnosis of disease? Nanobiosensors Dis Diagn. 2014 2014 1 10 Search in Google Scholar

Solaimuthu A, Vijayan AN, Murali P, Korrapati PS. Nano-biosensors and their relevance in tissue engineering. Curr Opin Biomed Eng. 2020; 13:84–93. SolaimuthuA VijayanAN MuraliP KorrapatiPS. Nano-biosensors and their relevance in tissue engineering Curr Opin Biomed Eng. 2020 13 84 93 Search in Google Scholar

Abdel-Karim R, Reda Y, Abdel-Fattah A. Review—nanostructured materials-based nanosensors. J Electrochem Soc. 2020; 167:037554. doi: 10.1149/1945-7111/ab67aa Abdel-KarimR RedaY Abdel-FattahA. Review—nanostructured materials-based nanosensors J Electrochem Soc. 2020 167 037554 10.1149/1945-7111/ab67aa Open DOISearch in Google Scholar

Noah NM, Ndangili PM. Current trends of nanobiosensors for point-of-care diagnostics. J Anal Methods Chem. 2019; 2019:2179718. doi: 10.1155/2019/2179718 NoahNM NdangiliPM. Current trends of nanobiosensors for point-of-care diagnostics J Anal Methods Chem. 2019 2019 2179718 10.1155/2019/2179718 Open DOISearch in Google Scholar

Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Mikrochim Acta. 2020; 187:639. doi: 10.1007/s00604-020-04615-x AntiochiaR. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives Mikrochim Acta. 2020 187 639 10.1007/s00604-020-04615-x Open DOISearch in Google Scholar

Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016; 60:111–20. KoczulaKM GallottaA. Lateral flow assays Essays Biochem. 2016 60 111 20 Search in Google Scholar

Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. a literature survey. Anal Bioanal Chem. 2009; 393:569–82. Posthuma-TrumpieGA KorfJ van AmerongenA. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. a literature survey Anal Bioanal Chem. 2009 393 569 82 Search in Google Scholar

Posthuma-Trumpie GA, van Amerongen A. Lateral flow assays. Antibodies Appl New Dev. 2012; 11:175–83. doi: 10.2174/978160805264611201010175 Posthuma-TrumpieGA van AmerongenA. Lateral flow assays Antibodies Appl New Dev. 2012 11 175 83 10.2174/978160805264611201010175 Open DOISearch in Google Scholar

Sajid M, Kawde AN, Daud M. Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc. 2015; 19:689–705. SajidM KawdeAN DaudM. Designs, formats and applications of lateral flow assay: a literature review J Saudi Chem Soc. 2015 19 689 705 Search in Google Scholar

Edwards KA, Baeumner AJ. Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization. Anal Bioanal Chem. 2006; 386:1335–43. EdwardsKA BaeumnerAJ. Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization Anal Bioanal Chem. 2006 386 1335 43 Search in Google Scholar

Yoo EH, Lee SY. Glucose biosensors: an overview of use in clinical practice. Sensors (Basel). 2010; 10:4558–76. YooEH LeeSY. Glucose biosensors: an overview of use in clinical practice Sensors (Basel). 2010 10 4558 76 Search in Google Scholar

Paek SH, Lee SH, Cho JH, Kim YS. Development of rapid one-step immunochromatographic assay. Methods. 2000; 22:53–60. PaekSH LeeSH ChoJH KimYS. Development of rapid one-step immunochromatographic assay Methods. 2000 22 53 60 Search in Google Scholar

Nguyen VT, Song S, Park S, Joo C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens Bioelectron. 2020; 152:112015. doi: 10.1016/j.bios.2020.112015 NguyenVT SongS ParkS JooC. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay Biosens Bioelectron. 2020 152 112015 10.1016/j.bios.2020.112015 Open DOISearch in Google Scholar

Wang D, He S, Wang X, Yan Y, Liu J, Wu S, et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020; 4:1150–8. WangD HeS WangX YanY LiuJ WuS Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA Nat Biomed Eng. 2020 4 1150 8 Search in Google Scholar

Khlebtsov B, Khlebtsov N. Surface-enhanced Raman scattering-based lateral-flow immunoassay. Nanomaterials (Basel). 2020; 10:2228. doi: 10.3390/nano10112228 KhlebtsovB KhlebtsovN. Surface-enhanced Raman scattering-based lateral-flow immunoassay Nanomaterials (Basel). 2020 10 2228 10.3390/nano10112228 Open DOISearch in Google Scholar

Calabria D, Calabretta MM, Zangheri M, Marchegiani E, Trozzi I, Guardigli M, et al. Recent advancements in enzyme-based lateral flow immunoassays. Sensors (Basel). 2021; 21:3358. doi: 10.3390/s21103358 CalabriaD CalabrettaMM ZangheriM MarchegianiE TrozziI GuardigliM Recent advancements in enzyme-based lateral flow immunoassays Sensors (Basel). 2021 21 3358 10.3390/s21103358 Open DOISearch in Google Scholar

Qu Z, Wang K, Alfranca G, de la Fuente JM, Cui D. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification. Nanoscale Res Lett. 2020; 15:10. doi: 10.1186/s11671-019-3240-3 QuZ WangK AlfrancaG de la FuenteJM CuiD. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification Nanoscale Res Lett. 2020 15 10 10.1186/s11671-019-3240-3 Open DOISearch in Google Scholar

Ye H, Liu Y, Zhan L, Liu Y, Qin Z. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics. 2020; 10:4359–73. YeH LiuY ZhanL LiuY QinZ. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials Theranostics. 2020 10 4359 73 Search in Google Scholar

Resch-Genger U, Barker PE. Standardization and quality assurance in fluorescence measurements. II Bioanalytical and biomedical applications. 2008; 6:89–117. doi: 10.1007/978-3-540-70571-0 Resch-GengerU BarkerPE. Standardization and quality assurance in fluorescence measurements II Bioanalytical and biomedical applications. 2008 6 89 117 10.1007/978-3-540-70571-0 Open DOISearch in Google Scholar

Henderson WA, Xiang L, Fourie NH, Abey SK, Ferguson EG, Diallo AF, et al. Simple lateral flow assays for microbial detection in stool. Anal Methods. 2018; 10:5358–63. HendersonWA XiangL FourieNH AbeySK FergusonEG DialloAF Simple lateral flow assays for microbial detection in stool Anal Methods. 2018 10 5358 63 Search in Google Scholar

Yin HY, Fang TJ, Wen HW. Combined multiplex loop-mediated isothermal amplification with lateral flow assay to detect sea and seb genes of enterotoxic Staphylococcus aureus. Lett Appl Microbiol. 2016; 63:16–24. YinHY FangTJ WenHW. Combined multiplex loop-mediated isothermal amplification with lateral flow assay to detect sea and seb genes of enterotoxic Staphylococcus aureus Lett Appl Microbiol. 2016 63 16 24 Search in Google Scholar

O’Farrell B. Evolution in lateral flow – based immunoassay systems. In: Wong R, Tse H, editors. Lateral flow immunoassay. Totowa, NJ: Humana Press; 2009, p. 1–33. O’FarrellB. Evolution in lateral flow – based immunoassay systems In: WongR TseH editors. Lateral flow immunoassay Totowa, NJ Humana Press 2009 1 33 Search in Google Scholar

Ching KH. Lateral flow immunoassay. Methods Mol Biol. 2015; 1318:127–37. ChingKH. Lateral flow immunoassay Methods Mol Biol. 2015 1318 127 37 Search in Google Scholar

de Assis TSM, Freire ML, Carvalho JP, Rabello A, Cota G. Cost-effectiveness of anti-SARS-CoV-2 antibody diagnostic tests in Brazil. PLoS One. 2022; 17:e0264159. doi: 10.1371/journal.pone.0264159 de AssisTSM FreireML CarvalhoJP RabelloA CotaG. Cost-effectiveness of anti-SARS-CoV-2 antibody diagnostic tests in Brazil PLoS One. 2022 17 e0264159 10.1371/journal.pone.0264159 Open DOISearch in Google Scholar

Ramachandran A, Manabe Y, Rajasingham R, Shah M. Cost-effectiveness of CRAG-LFA screening for cryptococcal meningitis among people living with HIV in Uganda. BMC Infect Dis. 2017; 17:225. doi: 10.1186/s12879-017-2325-9 RamachandranA ManabeY RajasinghamR ShahM. Cost-effectiveness of CRAG-LFA screening for cryptococcal meningitis among people living with HIV in Uganda BMC Infect Dis. 2017 17 225 10.1186/s12879-017-2325-9 Open DOISearch in Google Scholar

Goldstein LN, Wells M, Vincent-Lambert C. The cost-effectiveness of upfront point-of-care testing in the emergency department: a secondary analysis of a randomised, controlled trial. Scand J Trauma Resusc Emerg Med. 2019; 27:110. doi: 10.1186/s13049-019-0687-2 GoldsteinLN WellsM Vincent-LambertC. The cost-effectiveness of upfront point-of-care testing in the emergency department: a secondary analysis of a randomised, controlled trial Scand J Trauma Resusc Emerg Med. 2019 27 110 10.1186/s13049-019-0687-2 Open DOISearch in Google Scholar

Harder R, Wei K, Vaze V, Stahl JE. Simulation analysis and comparison of point of care testing and central laboratory testing. MDM Policy Pract. 2019; 4:1–14. doi: 10.1177/2381468319856306 HarderR WeiK VazeV StahlJE. Simulation analysis and comparison of point of care testing and central laboratory testing MDM Policy Pract. 2019 4 1 14 10.1177/2381468319856306 Open DOISearch in Google Scholar

Osredkar J. Point-of-care testing in laboratory medicine. Point-of-care diagnostics - new progresses perspectives. 2017; 3:1–28. doi: 10.5599/obp.11.1 OsredkarJ. Point-of-care testing in laboratory medicine Point-of-care diagnostics - new progresses perspectives. 2017 3 1 28 10.5599/obp.11.1 Open DOISearch in Google Scholar

Lin M, Zhao Y, Wang S, Liu M, Duan Z, Chen Y, et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv. 2012; 30:1551–61. LinM ZhaoY WangS LiuM DuanZ ChenY Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications Biotechnol Adv. 2012 30 1551 61 Search in Google Scholar

Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices. Biosens Bioelectron. 2019; 136:60–75. LiuL YangD LiuG. Signal amplification strategies for paper-based analytical devices Biosens Bioelectron. 2019 136 60 75 Search in Google Scholar

Andryukov BG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing covid-19. AIMS Microbiol. 2020; 6:280–304. AndryukovBG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing covid-19 AIMS Microbiol. 2020 6 280 304 Search in Google Scholar

Guteneva NV, Znoyko SL, Orlov AV, Nikitin MP, Nikitin PI. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse. Microchim Acta. 2019; 186:621. doi: 10.1007/s00604-019-3726-9 GutenevaNV ZnoykoSL OrlovAV NikitinMP NikitinPI. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse Microchim Acta. 2019 186 621 10.1007/s00604-019-3726-9 Open DOISearch in Google Scholar

Zhang Y, Liu X, Wang L, Yang H, Zhang X, Zhu C, et al. Improvement in detection limit for lateral flow assay of biomacro-molecules by test-zone pre-enrichment. Sci Rep. 2020; 10:9604. doi: 10.1038/s41598-020-66456-1 ZhangY LiuX WangL YangH ZhangX ZhuC Improvement in detection limit for lateral flow assay of biomacro-molecules by test-zone pre-enrichment Sci Rep. 2020 10 9604 10.1038/s41598-020-66456-1 Open DOISearch in Google Scholar

Kapoor A, Balasubramanian S, Vaishampayan V, Ghosh R. Lab-on-a-chip: a potential tool for enhancing teaching-learning in developing countries using paper microfluidics. Int Conf Transform Eng Educ ICTEE 2017. 2018. doi: 10.1109/ICTEED.2017.8586151 KapoorA BalasubramanianS VaishampayanV GhoshR Lab-on-a-chip: a potential tool for enhancing teaching-learning in developing countries using paper microfluidics Int Conf Transform Eng Educ ICTEE 2017 2018 10.1109/ICTEED.2017.8586151 Open DOISearch in Google Scholar

Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors (Basel). 2021; 21:5185. doi: 10.3390/s21155185 Di NardoF ChiarelloM CavaleraS BaggianiC AnfossiL. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives Sensors (Basel). 2021 21 5185 10.3390/s21155185 Open DOISearch in Google Scholar

Bartosh AV, Sotnikov DV, Hendrickson OD, Zherdev AV, Dzantiev BB. Design of multiplex lateral flow tests: a case study for simultaneous detection of three antibiotics. Biosensors (Basel). 2020; 10:17. doi: 10.3390/bios10030017 BartoshAV SotnikovDV HendricksonOD ZherdevAV DzantievBB. Design of multiplex lateral flow tests: a case study for simultaneous detection of three antibiotics Biosensors (Basel). 2020 10 17 10.3390/bios10030017 Open DOISearch in Google Scholar

Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Baggiani C. Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing. Biosensors (Basel). 2018; 9:2. doi: 10.3390/bios9010002 AnfossiL Di NardoF CavaleraS GiovannoliC BaggianiC. Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing Biosensors (Basel). 2018 9 2 10.3390/bios9010002 Open DOISearch in Google Scholar

Omidfar K, Khorsand F, Darziani Azizi M. New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens Bioelectron. 2013; 43:336–47. OmidfarK KhorsandF Darziani AziziM. New analytical applications of gold nanoparticles as label in antibody based sensors Biosens Bioelectron. 2013 43 336 47 Search in Google Scholar

Pongsuchart M, Sereemaspun A, Ruxrungtham K. UV treatment nucleic acid probe without biotin-labeling is sensitive and sufficient for the fabrication of nucleic acid lateral flow (NALF) strip test. J Life Sci Technol. 2013; 1:172–5. PongsuchartM SereemaspunA RuxrungthamK. UV treatment nucleic acid probe without biotin-labeling is sensitive and sufficient for the fabrication of nucleic acid lateral flow (NALF) strip test J Life Sci Technol. 2013 1 172 5 Search in Google Scholar

Pecchia S, Da Lio D. Development of a rapid PCR-nucleic acid lateral flow immunoassay (PCR-NALFIA) based on rDNA IGS sequence analysis for the detection of macrophomina phaseolina in soil. J Microbiol Methods. 2018; 151:118–28. PecchiaS Da LioD. Development of a rapid PCR-nucleic acid lateral flow immunoassay (PCR-NALFIA) based on rDNA IGS sequence analysis for the detection of macrophomina phaseolina in soil J Microbiol Methods. 2018 151 118 28 Search in Google Scholar

Liu X, Zhang C, Liu K, Wang H, Lu C, Li H, et al. Multiple SNPs detection based on lateral flow assay for phenylketonuria diagnostic. Anal Chem. 2018; 90:3430–6. LiuX ZhangC LiuK WangH LuC LiH Multiple SNPs detection based on lateral flow assay for phenylketonuria diagnostic Anal Chem. 2018 90 3430 6 Search in Google Scholar

Stedtfeld RD, Tourlousse DM, Seyrig G, Stedtfeld TM, Kronlein M, Price S, et al. Gene-Z: a device for point of care genetic testing using a smartphone. Lab Chip. 2012; 12:1454–62. StedtfeldRD TourlousseDM SeyrigG StedtfeldTM KronleinM PriceS Gene-Z: a device for point of care genetic testing using a smartphone Lab Chip. 2012 12 1454 62 Search in Google Scholar

Ho NRY, Lim GS, Sundah NR, Lim D, Loh TP, Shao H. Visual and modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes. Nat Commun. 2018; 9:323. doi: 10.1038/s41467-018-05733-0 HoNRY LimGS SundahNR LimD LohTP ShaoH. Visual and modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes Nat Commun. 2018 9 323 10.1038/s41467-018-05733-0 Open DOISearch in Google Scholar

Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for highly sensitive detection of RNA virus. Talanta. 2020; 210:120616. doi: 10.1016/j.talanta.2019.120616 IvanovAV SafenkovaIV ZherdevAV DzantievBB. Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for highly sensitive detection of RNA virus Talanta. 2020 210 120616 10.1016/j.talanta.2019.120616 Open DOISearch in Google Scholar

Sabidó M, Hernandez G, Gonzalez V, Valles X, Montoliu A, Figuerola J, et al. Clinic-based evaluation of a rapid point-of-care test for detection of Chlamydia trachomatis in specimens from sex workers in Escuintla, Guatemala. J Clin Microbiol. 2009; 47:475–6. SabidóM HernandezG GonzalezV VallesX MontoliuA FiguerolaJ Clinic-based evaluation of a rapid point-of-care test for detection of Chlamydia trachomatis in specimens from sex workers in Escuintla, Guatemala J Clin Microbiol. 2009 47 475 6 Search in Google Scholar

Krõlov K, Frolova J, Tudoran O, Suhorutsenko J, Lehto T, Sibul H, et al. Sensitive and rapid detection of chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagnostics. 2014; 16:127–35. KrõlovK FrolovaJ TudoranO SuhorutsenkoJ LehtoT SibulH Sensitive and rapid detection of chlamydia trachomatis by recombinase polymerase amplification directly from urine samples J Mol Diagnostics. 2014 16 127 35 Search in Google Scholar

Mens PF, de Bes HM, Sondo P, Laochan N, Keereecharoen L, van Amerongen A, et al. Direct blood PCR in combination with nucleic acid lateral flow immunoassay for detection of Plasmodium species in settings where malaria is endemic. J Clin Microbiol. 2012; 50:3520–5. MensPF de BesHM SondoP LaochanN KeereecharoenL van AmerongenA Direct blood PCR in combination with nucleic acid lateral flow immunoassay for detection of Plasmodium species in settings where malaria is endemic J Clin Microbiol. 2012 50 3520 5 Search in Google Scholar

Varlamov DA, Blagodatskikh KA, Smirnova EV, Kramarov VM, Ignatov KB. Combinations of PCR and isothermal amplification techniques are suitable for fast and sensitive detection of SARS-CoV-2 viral RNA. Front Bioeng Biotechnol. 2020; 8:604793. doi: 10.3389/fbioe.2020.604793 VarlamovDA BlagodatskikhKA SmirnovaEV KramarovVM IgnatovKB. Combinations of PCR and isothermal amplification techniques are suitable for fast and sensitive detection of SARS-CoV-2 viral RNA Front Bioeng Biotechnol. 2020 8 604793 10.3389/fbioe.2020.604793 Open DOISearch in Google Scholar

Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC. Aptamers facilitating amplified detection of biomolecules. Anal Chem. 2015; 87:274–92. LiF ZhangH WangZ NewbiggingAM ReidMS LiXF LeXC. Aptamers facilitating amplified detection of biomolecules Anal Chem. 2015 87 274 92 Search in Google Scholar

Javani A, Javadi-Zarnaghi F, Rasaee MJ. Development of a colorimetric nucleic acid-based lateral flow assay with non-biotinylated capture DNA. Appl Biol Chem. 2017; 60:637–45. JavaniA Javadi-ZarnaghiF RasaeeMJ. Development of a colorimetric nucleic acid-based lateral flow assay with non-biotinylated capture DNA Appl Biol Chem. 2017 60 637 45 Search in Google Scholar

Jauset-Rubio M, Svobodova M, Mairal T, McNeil C, Keegan N, Saeed A, et al. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci Rep. 2016; 6:37732. doi: 10.1038/srep37732 Jauset-RubioM SvobodovaM MairalT McNeilC KeeganN SaeedA Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay Sci Rep. 2016 6 37732 10.1038/srep37732 Open DOISearch in Google Scholar

Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano. 2021; 15(3):3593–611. LiuY ZhanL QinZ SackrisonJ BischofJC. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis ACS Nano. 2021 15 3 3593 611 Search in Google Scholar

Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One. 2014; 9:e112146. doi: 10.1371/journal.pone.0112146 CrannellZA RohrmanB Richards-KortumR. Equipment-free incubation of recombinase polymerase amplification reactions using body heat PLoS One. 2014 9 e112146 10.1371/journal.pone.0112146 Open DOISearch in Google Scholar

Mugasa CM, Laurent T, Schoone GJ, Kager PA, Lubega GW, Schallig HD. Nucleic acid sequence-based amplification with oligochromatography for detection of trypanosoma brucei in clinical samples. J Clin Microbiol. 2009; 47:630–5. MugasaCM LaurentT SchooneGJ KagerPA LubegaGW SchalligHD. Nucleic acid sequence-based amplification with oligochromatography for detection of trypanosoma brucei in clinical samples J Clin Microbiol. 2009 47 630 5 Search in Google Scholar

Wu Q, Suo C, Brown T, Wang T, Teichmann SA, Bassett AR. INSIGHT: a population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing. Sci Adv. 2021; 7:eabe5054. doi: 10.1126/sciadv.abe5054 WuQ SuoC BrownT WangT TeichmannSA BassettAR. INSIGHT: a population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing Sci Adv. 2021 7 eabe5054 10.1126/sciadv.abe5054 Open DOISearch in Google Scholar

Hara-Kudo Y, Konishi N, Ohtsuka K, Hiramatsu R, Tanaka H, Konuma H, Takatori K. Detection of verotoxigenic Escherichia coli O157 and O26 in food by plating methods and LAMP method: a collaborative study. Int J Food Microbiol. 2008; 122: 156–61. Hara-KudoY KonishiN OhtsukaK HiramatsuR TanakaH KonumaH TakatoriK. Detection of verotoxigenic Escherichia coli O157 and O26 in food by plating methods and LAMP method: a collaborative study Int J Food Microbiol. 2008 122 156 61 Search in Google Scholar

Nizar NNA, Zainal IH, Bonny SQ, Pulingam T, Vythalingam LM, Ali ME. DNA and nanobiosensor technology for the detection of adulteration and microbial contamination in religious food. Elsevier Ltd (Bengaluru, India). 2018. p. 409–31. NizarNNA ZainalIH BonnySQ PulingamT VythalingamLM AliME. DNA and nanobiosensor technology for the detection of adulteration and microbial contamination in religious food Elsevier Ltd Bengaluru, India 2018 409 31 Search in Google Scholar

Foo PC, Nurul Najian AB, Muhamad NA, Ahamad M, Mohamed M, Yean Yean C, Lim BH. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: a comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from. BMC Biotechnol. 2020; 20:34. doi: 10.1186/s12896-020-00629-8 FooPC Nurul NajianAB MuhamadNA AhamadM MohamedM Yean YeanC LimBH. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: a comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from BMC Biotechnol. 2020 20 34 10.1186/s12896-020-00629-8 Open DOISearch in Google Scholar

Hardinge P, Murray JAH. Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers. Sci Rep. 2019; 9:7400. doi: 10.1038/s41598-019-43817-z HardingeP MurrayJAH. Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers Sci Rep. 2019 9 7400 10.1038/s41598-019-43817-z Open DOISearch in Google Scholar

Zhao X, Lin CW, Wang J, Oh DH. Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol. 2014; 24:297–312. ZhaoX LinCW WangJ OhDH. Advances in rapid detection methods for foodborne pathogens J Microbiol Biotechnol. 2014 24 297 312 Search in Google Scholar

Panno S, Matić S, Tiberini A, Caruso AG, Bella P, Torta L, et al. Loop mediated isothermal amplification: principles and applications in plant virology. Plants (Basel). 2020; 9:461. doi: 10.3390/plants9040461 PannoS MatićS TiberiniA CarusoAG BellaP TortaL Loop mediated isothermal amplification: principles and applications in plant virology Plants (Basel). 2020 9 461 10.3390/plants9040461 Open DOISearch in Google Scholar

Wang T, Chen L, Chikkanna A, Chen S, Brusius I, Sbuh N, Veedu RN. Development of nucleic acid aptamer-based lateral flow assays: a robust platform for cost-effective point-of-care diagnosis. Theranostics. 2021; 11:5174–96. WangT ChenL ChikkannaA ChenS BrusiusI SbuhN VeeduRN. Development of nucleic acid aptamer-based lateral flow assays: a robust platform for cost-effective point-of-care diagnosis Theranostics. 2021 11 5174 96 Search in Google Scholar

Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem. 2009; 81:10013–8. LiuG MaoX PhillipsJA XuH TanW ZengL. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells Anal Chem. 2009 81 10013 8 Search in Google Scholar

Zhou L, Wang MH, Wang JP, Ye ZZ. Application of biosensor surface immobilization methods for aptamer. Chin J Anal Chem. 2011; 39:432–8. ZhouL WangMH WangJP YeZZ. Application of biosensor surface immobilization methods for aptamer Chin J Anal Chem. 2011 39 432 8 Search in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine