Cite

Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev. Cancer. 2017; 17:528–42. LevyJMM TowersCG ThorburnA Targeting autophagy in cancer Nat Rev. Cancer 2017 17 528 42 10.1038/nrc.2017.53597536728751651 Search in Google Scholar

White E. The role for autophagy in cancer. J Clin Investig. 2015; 125:42–6. WhiteE The role for autophagy in cancer J Clin Investig 2015 125 42 6 10.1172/JCI73941438224725654549 Search in Google Scholar

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646–74. HanahanD WeinbergRA Hallmarks of cancer: the next generation Cell 2011 144 646 74 10.1016/j.cell.2011.02.01321376230 Search in Google Scholar

Cheong H. Chapter 23. Role of autophagy in cancer metabolism. In: Gorbunov NV, Schneider M, editors. Autophagy in current trends in cellular physiology and pathology. London: IntechOpen; 2016, p. 499–514. doi: 10.5772/64025 CheongH Chapter 23. Role of autophagy in cancer metabolism In: GorbunovNV SchneiderM editors. Autophagy in current trends in cellular physiology and pathology London IntechOpen 2016 499 514 10.5772/64025 Open DOISearch in Google Scholar

Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008; 451(7182):1069–75. MizushimaN LevineB CuervoAM KlionskyDJ Autophagy fights disease through cellular self-digestion Nature 2008 451 7182 1069 75 10.1038/nature06639267039918305538 Search in Google Scholar

Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009; 10:458–67. NakatogawaH SuzukiK KamadaY OhsumiY Dynamics and diversity in autophagy mechanisms: lessons from yeast Nat Rev Mol Cell Biol 2009 10 458 67 10.1038/nrm270819491929 Search in Google Scholar

Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002; 27:421–9. MizushimaN OhsumiY YoshimoriT Autophagosome formation in mammalian cells Cell Struct Funct 2002 27 421 9 10.1247/csf.27.42112576635 Search in Google Scholar

Wang X, Zhang X, Dong X-P, Samie M, Li X, Cheng X, et al. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell. 2012; 151:372–83. WangX ZhangX DongX-P SamieM LiX ChengX TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes Cell 2012 151 372 83 10.1016/j.cell.2012.08.036347518623063126 Search in Google Scholar

Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018; 19:365–81. KaushikS CuervoAM The coming of age of chaperone-mediated autophagy Nat Rev Mol Cell Biol 2018 19 365 81 10.1038/s41580-018-0001-6639951829626215 Search in Google Scholar

Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020; 19:12. doi: 10.1186/s12943-020-1138-4 LiX HeS MaB Autophagy and autophagy-related proteins in cancer Mol Cancer 2020 19 12 10.1186/s12943-020-1138-4697507031969156 Open DOISearch in Google Scholar

Li Y, Chen Y. Chapter 4. AMPK and autophagy. In: Qin Z-H, editor. Autophagy: biology and diseases. Beijing: Science Press, and Singapore: Springer Nature; 2019, p. 85–108. (Crusio WE, Lambris JD, Rezaei N, series editors, Adv Exp Med Biol., vol. 1206). doi: 10.1007/978-981-15-0602-4_4 LiY ChenY Chapter 4. AMPK and autophagy In: QinZ-H editor. Autophagy: biology and diseases Beijing Science Press, and Singapore: Springer Nature 2019 85 108 (Crusio WE, Lambris JD, Rezaei N, series editors, Adv Exp Med Biol., vol. 1206). 10.1007/978-981-15-0602-4_431776981 Open DOISearch in Google Scholar

Al-Bari MAA, Xu P. Molecular regulation of autophagy machinery by mTOR-dependent and-independent pathways. Ann NY Acad Sci. 2020; 1467:3–20. Al-BariMAA XuP Molecular regulation of autophagy machinery by mTOR-dependent and-independent pathways Ann NY Acad Sci 2020 1467 3 20 10.1111/nyas.1430531985829 Search in Google Scholar

Chen X, Li S, Li D, Li M, Su Z, Lai X, et al. Ethanol extract of Brucea javanica seed inhibit triple-negative breast cancer by restraining autophagy via PI3K/Akt/mTOR pathway. Front Pharmacol. 2020; 11:606. doi: 10.3389/fphar.2020.00606 ChenX LiS LiD LiM SuZ LaiX Ethanol extract of Brucea javanica seed inhibit triple-negative breast cancer by restraining autophagy via PI3K/Akt/mTOR pathway Front Pharmacol 2020 11 606 10.3389/fphar.2020.00606720104332411003 Open DOISearch in Google Scholar

Seabright AP, Fine NH, Barlow JP, Lord SO, Musa I, Gray A, et al. AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner. FASEB J. 2020; 34:6284–301. SeabrightAP FineNH BarlowJP LordSO MusaI GrayA AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner FASEB J 2020 34 6284 301 10.1096/fj.201903051R721201932201986 Search in Google Scholar

Movahhed P, Saberiyan M, Safi A, Arshadi Z, Kazerouni F, Teimori H. The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer. Mol Biol Rep. 2022; 49:4959–64. MovahhedP SaberiyanM SafiA ArshadiZ KazerouniF TeimoriH The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer Mol Biol Rep 2022 49 4959 64 10.1007/s11033-022-07154-135083613 Search in Google Scholar

Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011; 12:295–303. DelgoffeGM PollizziKN WaickmanAT HeikampE MeyersDJ HortonMR The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2 Nat Immunol 2011 12 295 303 10.1038/ni.2005307782121358638 Search in Google Scholar

Feng Y, Kang HH, Wong P-M, Gao M, Wang P, Jiang X. Unc-51-like kinase (ULK) complex-independent autophagy induced by hypoxia. Protein Cell. 2019; 10:376–81. FengY KangHH WongP-M GaoM WangP JiangX Unc-51-like kinase (ULK) complex-independent autophagy induced by hypoxia Protein Cell 2019 10 376 81 10.1007/s13238-018-0584-x646804130374937 Search in Google Scholar

Cheong H, Nair U, Geng J, Klionsky DJ. The ATG1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell. 2008; 19:668–81. CheongH NairU GengJ KlionskyDJ The ATG1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae Mol Biol Cell 2008 19 668 81 10.1091/mbc.e07-08-0826223059218077553 Search in Google Scholar

Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 2008; 19:5360–72. ItakuraE KishiC InoueK MizushimaN Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG Mol Biol Cell 2008 19 5360 72 10.1091/mbc.e08-01-0080259266018843052 Search in Google Scholar

Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci. 2013; 126:2534–44. SuzukiK AkiokaM Kondo-KakutaC YamamotoH OhsumiY Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae J Cell Sci 2013 126 2534 44 10.1242/jcs.12296023549786 Search in Google Scholar

Wijdeven RH, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, Neefjes J. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016; 7:11808. doi: 10.1038/ncomms11808 WijdevenRH JanssenH NahidiazarL JanssenL JalinkK BerlinI NeefjesJ Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway Nat Commun 2016 7 11808 10.1038/ncomms11808490641127283760 Open DOISearch in Google Scholar

Kimura S, Noda T, Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct. 2008; 33:109–22. KimuraS NodaT YoshimoriT Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes Cell Struct Funct 2008 33 109 22 10.1247/csf.0800518388399 Search in Google Scholar

Gąsiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pękala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs. 2021; 39:538–63. GąsiorkiewiczBM Koczurkiewicz-AdamczykP PiskaK PękalaE Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer Invest New Drugs 2021 39 538 63 10.1007/s10637-020-01032-y796062433159673 Search in Google Scholar

Flynn ALB, Schiemann WP. Autophagy in breast cancer metastatic dormancy: tumor suppressing or tumor promoting functions? J Cancer Metastatis Treat. 2019; 5:43. doi: 10.20517/2394-4722.2019.13 FlynnALB SchiemannWP Autophagy in breast cancer metastatic dormancy: tumor suppressing or tumor promoting functions? J Cancer Metastatis Treat 2019 5 43 10.20517/2394-4722.2019.13670185031431926 Open DOISearch in Google Scholar

Wu J, Ye J, Xie Q, Liu B, Liu M. Targeting regulated cell death with pharmacological small molecules: an update on autophagy-dependent cell death, ferroptosis, and necroptosis in cancer: miniperspective. J Med Chem. 2022; 65:2989–3001. WuJ YeJ XieQ LiuB LiuM Targeting regulated cell death with pharmacological small molecules: an update on autophagy-dependent cell death, ferroptosis, and necroptosis in cancer: miniperspective J Med Chem 2022 65 2989 3001 10.1021/acs.jmedchem.1c0157235130435 Search in Google Scholar

Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis. 2022; 1868:166400. doi: 10.1016/j.bbadis.2022.166400 RavichandranR PriyaDharshiniLC SakthivelKM RasmiRR Role and regulation of autophagy in cancer Biochim Biophys Acta Mol Basis Dis 2022 1868 166400 10.1016/j.bbadis.2022.16640035341960 Open DOISearch in Google Scholar

Yun CW, Lee SH. The roles of autophagy in cancer. Int J Mol Sci. 2018; 19:3466. doi: 10.3390/ijms19113466 YunCW LeeSH The roles of autophagy in cancer Int J Mol Sci 2018 19 3466 10.3390/ijms19113466627480430400561 Open DOISearch in Google Scholar

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen H-Y, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009; 137:1062–75. MathewR KarpCM BeaudoinB VuongN ChenG ChenH-Y Autophagy suppresses tumorigenesis through elimination of p62 Cell 2009 137 1062 75 10.1016/j.cell.2009.03.048280231819524509 Search in Google Scholar

White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 2009; 15:5308–16. WhiteE DiPaolaRS The double-edged sword of autophagy modulation in cancer Clin Cancer Res 2009 15 5308 16 10.1158/1078-0432.CCR-07-5023273708319706824 Search in Google Scholar

Singh SS, Vats S, Chia AY-Q, Tan TZ, Deng S, Ong MS, et al. Dual role of autophagy in hallmarks of cancer. Oncogene. 2018; 37:1142–58. SinghSS VatsS ChiaAY-Q TanTZ DengS OngMS Dual role of autophagy in hallmarks of cancer Oncogene 2018 37 1142 58 10.1038/s41388-017-0046-629255248 Search in Google Scholar

Cristofani R, Marelli MM, Cicardi ME, Fontana F, Marzagalli M, Limonta P, et al. Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death Dis. 2018; 9:889. doi: 10.1038/s41419-018-0866-5 CristofaniR MarelliMM CicardiME FontanaF MarzagalliM LimontaP Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells Cell Death Dis 2018 9 889 10.1038/s41419-018-0866-5611730030166521 Open DOISearch in Google Scholar

Patra S, Pradhan B, Nayak R, Behera C, Panda KC, Das S, et al. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: current evidences and future perspectives. Phytother Res. 2021; 35:4194–214. PatraS PradhanB NayakR BeheraC PandaKC DasS Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: current evidences and future perspectives Phytother Res 2021 35 4194 214 10.1002/ptr.708233749909 Search in Google Scholar

Perez-Mancera PA, Young AR, Narita M. Inside and out: the activities of senescence in cancer. Nat Rev Cancer. 2014; 14:547–58. Perez-ManceraPA YoungAR NaritaM Inside and out: the activities of senescence in cancer Nat Rev Cancer 2014 14 547 58 10.1038/nrc377325030953 Search in Google Scholar

Saoudaoui S, Bernard M, Cardin GB, Malaquin N, Christopoulos A, Rodier F. mTOR as a senescence manipulation target: a forked road. Adv Cancer Res. 2021; 150:335–63. SaoudaouiS BernardM CardinGB MalaquinN ChristopoulosA RodierF mTOR as a senescence manipulation target: a forked road Adv Cancer Res 2021 150 335 63 10.1016/bs.acr.2021.02.00233858600 Search in Google Scholar

Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA. Chapter 1. Autophagy and senescence in cancer therapy. In: Gewirtz DA, Fisher PB, editors. Autophagy and senescence in cancer therapy. San Diego: Academic Press; 2021, p. 1–74. (series, Adv Cancer Res., Vol. 150) PatelNH BloukhS AlwohoshE AlhesaA SalehT GewirtzDA Chapter 1. Autophagy and senescence in cancer therapy In: GewirtzDA FisherPB editors. Autophagy and senescence in cancer therapy San Diego Academic Press 2021 1 74 (series, Adv Cancer Res., Vol. 150) 10.1016/bs.acr.2021.01.00233858594 Search in Google Scholar

Liu EY, Ryan KM. Autophagy and cancer – issues we need to digest. J Cell Sci. 2012; 125:2349–58. LiuEY RyanKM Autophagy and cancer – issues we need to digest J Cell Sci 2012 125 2349 58 10.1242/jcs.09370822641689 Search in Google Scholar

Ding Z-B, Shi Y-H, Zhou J, Qiu S-J, Xu Y, Dai Z, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res. 2008; 68:9167–75. DingZ-B ShiY-H ZhouJ QiuS-J XuY DaiZ Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma Cancer Res 2008 68 9167 75 10.1158/0008-5472.CAN-08-157319010888 Search in Google Scholar

Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy, and tumor suppressor function. Autophagy. 2005; 1:46–52. FuruyaN YuJ ByfieldM PattingreS LevineB The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy, and tumor suppressor function Autophagy 2005 1 46 52 10.4161/auto.1.1.154216874027 Search in Google Scholar

Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011; 25:795–800. TakamuraA KomatsuM HaraT SakamotoA KishiC WaguriS Autophagy-deficient mice develop multiple liver tumors Genes Dev 2011 25 795 800 10.1101/gad.2016211307870521498569 Search in Google Scholar

An CH, Kim MS, Yoo NJ, Park SW, Lee SH. Mutational and expressional analyses of ATG5, an autophagy-related gene, in gastrointestinal cancers. Pathol Res Pract. 2011; 207:433–7. AnCH KimMS YooNJ ParkSW LeeSH Mutational and expressional analyses of ATG5, an autophagy-related gene, in gastrointestinal cancers Pathol Res Pract 2011 207 433 7 10.1016/j.prp.2011.05.00221664058 Search in Google Scholar

Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 2007; 9:1142–51. TakahashiY CoppolaD MatsushitaN CualingHD SunM SatoY Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis Nat Cell Biol 2007 9 1142 51 10.1038/ncb1634225452117891140 Search in Google Scholar

Rodgers MA, Bowman JW, Liang Q, Jung JU. Regulation where autophagy intersects the inflammasome. Antioxid Redox Signal. 2014; 20:495–506. RodgersMA BowmanJW LiangQ JungJU Regulation where autophagy intersects the inflammasome Antioxid Redox Signal 2014 20 495 506 10.1089/ars.2013.5347389470123642014 Search in Google Scholar

Kwong C, Gilman-Sachs A, Beaman K. Tumor-associated a2 vacuolar ATPase acts as a key mediator of cancer-related inflammation by inducing pro-tumorigenic properties in monocytes. J Immunol Res. 2011; 186:1781–9. KwongC Gilman-SachsA BeamanK Tumor-associated a2 vacuolar ATPase acts as a key mediator of cancer-related inflammation by inducing pro-tumorigenic properties in monocytes J Immunol Res 2011 186 1781 9 10.4049/jimmunol.100299821178005 Search in Google Scholar

Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol. 2009; 10:461–70. VirginHW LevineB Autophagy genes in immunity Nat Immunol 2009 10 461 70 10.1038/ni.1726271536519381141 Search in Google Scholar

Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420(6917):860–7. CoussensLM WerbZ Inflammation and cancer Nature 2002 420 6917 860 7 10.1038/nature01322280303512490959 Search in Google Scholar

Maiuri M, Tasdemir E, Criollo A, Morselli E, Vicencio J, Carnuccio R, Kroemer G. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009; 16:87–93. MaiuriM TasdemirE CriolloA MorselliE VicencioJ CarnuccioR KroemerG Control of autophagy by oncogenes and tumor suppressor genes Cell Death Differ 2009 16 87 93 10.1038/cdd.2008.13118806760 Search in Google Scholar

Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res. 2022; doi: 10.1007/s13346-022-01125-6 NegiS ChaudhuriA KumarDN DehariD SinghS AgrawalAK Nanotherapeutics in autophagy: a paradigm shift in cancer treatment Drug Deliv Transl Res 2022 10.1007/s13346-022-01125-635149969 Open DOISearch in Google Scholar

Dower CM, Wills CA, Frisch SM, Wang H-G. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy. 2018; 14:1110–28. DowerCM WillsCA FrischSM WangH-G Mechanisms and context underlying the role of autophagy in cancer metastasis Autophagy 2018 14 1110 28 10.1080/15548627.2018.1450020610372029863947 Search in Google Scholar

Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014; 14:611–22. SosaMS BragadoP Aguirre-GhisoJA Mechanisms of disseminated cancer cell dormancy: an awakening field Nat Rev Cancer 2014 14 611 22 10.1038/nrc3793423070025118602 Search in Google Scholar

Peng Y-F, Shi Y-H, Shen Y-H, Ding Z-B, Ke A-W, Zhou J, et al. Promoting colonization in metastatic HCC cells by modulation of autophagy. PLoS One. 2013; 8:74407. doi: 10.1371/journal.pone.0074407 PengY-F ShiY-H ShenY-H DingZ-B KeA-W ZhouJ Promoting colonization in metastatic HCC cells by modulation of autophagy PLoS One 2013 8 74407 10.1371/journal.pone.0074407377285924058558 Open DOISearch in Google Scholar

Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A. 2010; 107:18511–6. Scherz-ShouvalR WeidbergH GonenC WilderS ElazarZ OrenM p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation Proc Natl Acad Sci U S A 2010 107 18511 6 10.1073/pnas.1006124107297296720937856 Search in Google Scholar

Ryan KM. p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur J Cancer. 2011; 47:44–50. RyanKM p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome Eur J Cancer 2011 47 44 50 10.1016/j.ejca.2010.10.02021112207 Search in Google Scholar

Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007; 7:295–308. SchubbertS ShannonK BollagG Hyperactive Ras in developmental disorders and cancer Nat Rev Cancer 2007 7 295 308 10.1038/nrc210917384584 Search in Google Scholar

Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou Y-H, Formstecher E, et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 2011; 144:253–67. BodemannBO OrvedahlA ChengT RamRR OuY-H FormstecherE RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly Cell 2011 144 253 67 10.1016/j.cell.2010.12.018303859021241894 Search in Google Scholar

Corcelle E, Nebout M, Bekri S, Gauthier N, Hofman P, Poujeol P, et al. Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal–regulated kinase activity. Cancer Res. 2006; 66:6861–70. CorcelleE NeboutM BekriS GauthierN HofmanP PoujeolP Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal–regulated kinase activity Cancer Res 2006 66 6861 70 10.1158/0008-5472.CAN-05-355716818664 Search in Google Scholar

Elgendy M, Sheridan C, Brumatti G, Martin SJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell. 2011; 42:23–35. ElgendyM SheridanC BrumattiG MartinSJ Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival Mol Cell 2011 42 23 35 10.1016/j.molcel.2011.02.00921353614 Search in Google Scholar

Lippai M, Lőw P. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res Int. 2014; 2014:832704. doi: 10.1155/2014/832704 LippaiM LőwP The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy Biomed Res Int 2014 2014 832704 10.1155/2014/832704407509125013806 Open DOISearch in Google Scholar

Huang J, Duran A, Reina-Campos M, Valencia T, Castilla EA, Müller TD, et al. Adipocyte p62/SQSTM1 suppresses tumori-genesis through opposite regulations of metabolism in adipose tissue and tumor. Cancer Cell. 2018; 33:770–84.e6. doi: 10.1016/j.ccell.2018.03.001 HuangJ DuranA Reina-CamposM ValenciaT CastillaEA MüllerTD Adipocyte p62/SQSTM1 suppresses tumori-genesis through opposite regulations of metabolism in adipose tissue and tumor Cancer Cell 2018 33 770 84.e6 10.1016/j.ccell.2018.03.001589678629634950 Open DOISearch in Google Scholar

Li S-S, Xu L-Z, Zhou W, Yao S, Wang C-L, Xia J-L, et al. p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis. Carcinogenesis. 2017; 38:1092–103. LiS-S XuL-Z ZhouW YaoS WangC-L XiaJ-L p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis Carcinogenesis 2017 38 1092 103 10.1093/carcin/bgx099586232728968743 Search in Google Scholar

Zou Z, Zhang J, Zhang H, Liu H, Li Z, Cheng D, et al. 3-Methyladenine can depress drug efflux transporters via blocking the PI3K–AKT–mTOR pathway thus sensitizing MDR cancer to chemotherapy. J Drug Target. 2014; 22:839–48. ZouZ ZhangJ ZhangH LiuH LiZ ChengD 3-Methyladenine can depress drug efflux transporters via blocking the PI3K–AKT–mTOR pathway thus sensitizing MDR cancer to chemotherapy J Drug Target 2014 22 839 48 10.3109/1061186X.2014.93687025019701 Search in Google Scholar

Cirone M, Montani MSG, Granato M, Garufi A, Faggioni A, D'Orazi G. Autophagy manipulation as a strategy for efficient anticancer therapies: possible consequences. J Exp Clin Cancer Res. 2019; 38:262. doi: 10.1186/s13046-019-1275-z CironeM MontaniMSG GranatoM GarufiA FaggioniA D'OraziG Autophagy manipulation as a strategy for efficient anticancer therapies: possible consequences J Exp Clin Cancer Res 2019 38 262 10.1186/s13046-019-1275-z657088831200739 Open DOISearch in Google Scholar

Bai Z, Peng Y, Ye X, Liu Z, Li Y, Ma L. Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications. J Zhejiang Univ Sci B. 2022; 23:89–101. BaiZ PengY YeX LiuZ LiY MaL Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications J Zhejiang Univ Sci B 2022 23 89 101 10.1631/jzus.B2100804886155935187884 Search in Google Scholar

Linder B, Kögel D. Autophagy in cancer cell death. Biology (Basel). 2019; 8:82. doi: 10.3390/biology8040082 LinderB KögelD Autophagy in cancer cell death Biology (Basel) 2019 8 82 10.3390/biology8040082695618631671879 Open DOISearch in Google Scholar

Ashrafizadeh M, Paskeh MD, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, et al. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res. 2022; 41:105. doi: 10.1186/s13046-022-02293-6 AshrafizadehM PaskehMD MirzaeiS GholamiMH ZarrabiA HashemiF Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response J Exp Clin Cancer Res 2022 41 105 10.1186/s13046-022-02293-6893920935317831 Open DOISearch in Google Scholar

Jeda AS, Ghabeshi S, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, et al. Autophagy modulation and cancer combination therapy: a smart approach in cancer therapy. Cancer Treat Res Commun. 2022; 7:100512. doi: 10.1016/j.ctarc.2022.100512 JedaAS GhabeshiS JazaeriEO AraiinejadM SheikholeslamiF AbdoliM Autophagy modulation and cancer combination therapy: a smart approach in cancer therapy Cancer Treat Res Commun 2022 7 100512 10.1016/j.ctarc.2022.10051235026533 Open DOISearch in Google Scholar

Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019; 9:1167–81. AmaravadiRK KimmelmanAC DebnathJ Targeting autophagy in cancer: recent advances and future directions Cancer Discov 2019 9 1167 81 10.1158/2159-8290.CD-19-0292730685631434711 Search in Google Scholar

Carew JS, Kelly KR, Nawrocki ST. Autophagy as a target for cancer therapy: new developments. Cancer Manag Res. 2012; 4:357–65. CarewJS KellyKR NawrockiST Autophagy as a target for cancer therapy: new developments Cancer Manag Res 2012 4 357 65 10.2147/CMAR.S26133347414323091399 Search in Google Scholar

Sharma K, Le N, Alotaibi M, Gewirtz DA. Cytotoxic autophagy in cancer therapy. Int J Mol Sci. 2014; 15:10034–51. SharmaK LeN AlotaibiM GewirtzDA Cytotoxic autophagy in cancer therapy Int J Mol Sci 2014 15 10034 51 10.3390/ijms150610034410013824905404 Search in Google Scholar

Thelen M, Wymann MP, Langen H. Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc Natl Acad Sci U S A. 1994; 91:4960–4. ThelenM WymannMP LangenH Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes Proc Natl Acad Sci U S A 1994 91 4960 4 10.1073/pnas.91.11.4960439098197165 Search in Google Scholar

Wu Y-T, Tan H-L, Shui G, Bauvy C, Huang Q, Wenk MR, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010; 285:10850–61. WuY-T TanH-L ShuiG BauvyC HuangQ WenkMR Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase J Biol Chem 2010 285 10850 61 10.1074/jbc.M109.080796285629120123989 Search in Google Scholar

Tran AT, Ramalinga M, Kedir H, Clarke R, Kumar D. Autophagy inhibitor 3-methyladenine potentiates apoptosis induced by dietary tocotrienols in breast cancer cells. Eur J Nutr. 2015; 54:265–72. TranAT RamalingaM KedirH ClarkeR KumarD Autophagy inhibitor 3-methyladenine potentiates apoptosis induced by dietary tocotrienols in breast cancer cells Eur J Nutr 2015 54 265 72 10.1007/s00394-014-0707-y423320224830781 Search in Google Scholar

Parr C, Carzaniga R, Gentleman SM, Van Leuven F, Walter J, Sastre M. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol Cell Biol. 2012; 32:4410–8. ParrC CarzanigaR GentlemanSM Van LeuvenF WalterJ SastreM Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein Mol Cell Biol 2012 32 4410 8 10.1128/MCB.00930-12348615322927642 Search in Google Scholar

Turkoz Uluer E, Kilicaslan Sonmez P, Akogullari D, Onal M, Tanriover G, Inan S. Do wortmannin and thalidomide induce apoptosis by autophagy inhibition in 4T1 breast cancer cells in vitro and in vivo? Am J Transl Res. 2021; 13:6236–47. Turkoz UluerE Kilicaslan SonmezP AkogullariD OnalM TanrioverG InanS Do wortmannin and thalidomide induce apoptosis by autophagy inhibition in 4T1 breast cancer cells in vitro and in vivo? Am J Transl Res. 2021 13 6236 47 Search in Google Scholar

Rao J, Mei L, Liu J, Tang X, Yin S, Xia C, et al. Size-adjustable micelles co-loaded with a chemotherapeutic agent and an autophagy inhibitor for enhancing cancer treatment via increased tumor retention. Acta Biomater. 2019; 89:300–12. RaoJ MeiL LiuJ TangX YinS XiaC Size-adjustable micelles co-loaded with a chemotherapeutic agent and an autophagy inhibitor for enhancing cancer treatment via increased tumor retention Acta Biomater 2019 89 300 12 10.1016/j.actbio.2019.03.02230878446 Search in Google Scholar

Li C, Liu Y, Liu H, Zhang W, Shen C, Cho K, et al. Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells. Cell Physiol Biochem. 2015; 35:1303–16. LiC LiuY LiuH ZhangW ShenC ChoK Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells Cell Physiol Biochem 2015 35 1303 16 10.1159/00037395225721868 Search in Google Scholar

Xu R, Ji Z, Xu C, Zhu J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: a systematic review and meta-analysis. Medicine. 2018; 97:e12912. doi: 10.1197/MD.0000000000012912 XuR JiZ XuC ZhuJ The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: a systematic review and meta-analysis Medicine 2018 97 e12912 10.1197/MD.0000000000012912 Open DOISearch in Google Scholar

Mohsen S, Sobash PT, Algwaiz GF, Nasef N, Al-Zeidaneen SA, Karim NA. Autophagy agents in clinical trials for cancer therapy: a brief review. Curr Oncol. 2022; 29:1695–708. MohsenS SobashPT AlgwaizGF NasefN Al-ZeidaneenSA KarimNA Autophagy agents in clinical trials for cancer therapy: a brief review Curr Oncol 2022 29 1695 708 10.3390/curroncol29030141894697435323341 Search in Google Scholar

Jones TM, Espitia C, Wang W, Nawrocki ST, Carew JS. Moving beyond hydroxychloroquine: the novel lysosomal autophagy inhibitor ROC-325 shows significant potential in preclinical studies. Cancer Commun (Lond). 2019; 39:72. doi: 10.1186/s40880-019-0418-0 JonesTM EspitiaC WangW NawrockiST CarewJS Moving beyond hydroxychloroquine: the novel lysosomal autophagy inhibitor ROC-325 shows significant potential in preclinical studies Cancer Commun (Lond) 2019 39 72 10.1186/s40880-019-0418-0684250231706349 Open DOISearch in Google Scholar

Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema K-J, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018; 14:1435–55. MautheM OrhonI RocchiC ZhouX LuhrM HijlkemaK-J Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion Autophagy 2018 14 1435 55 10.1080/15548627.2018.1474314610368229940786 Search in Google Scholar

Zeh HJ, Bahary N, Boone BA, Singhi AD, Miller-Ocuin JL, Normolle DP, et al. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients. Clin Cancer Res. 2020; 26:3126–34. ZehHJ BaharyN BooneBA SinghiAD Miller-OcuinJL NormolleDP A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients Clin Cancer Res 2020 26 3126 34 10.1158/1078-0432.CCR-19-4042808659732156749 Search in Google Scholar

Li L-Q, Xie W-J, Pan D, Chen H, Zhang L. Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity of gastric cancer cells. Tumor Biol. 2016; 37:653–9. LiL-Q XieW-J PanD ChenH ZhangL Inhibition of autophagy by bafilomycin A1 promotes chemosensitivity of gastric cancer cells Tumor Biol 2016 37 653 9 10.1007/s13277-015-3842-z26242265 Search in Google Scholar

Liu P-F, Tsai K-L, Hsu C-J, Tsai W-L, Cheng J-S, Chang H-W, et al. Drug repurposing screening identifies tioconazole as an ATG4 inhibitor that suppresses autophagy and sensitizes cancer cells to chemotherapy. Theranostics. 2018; 8:830–45. LiuP-F TsaiK-L HsuC-J TsaiW-L ChengJ-S ChangH-W Drug repurposing screening identifies tioconazole as an ATG4 inhibitor that suppresses autophagy and sensitizes cancer cells to chemotherapy Theranostics 2018 8 830 45 10.7150/thno.22012577109729344310 Search in Google Scholar

Chu J, Fu Y, Xu J, Zheng X, Gu Q, Luo X, et al. ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition. Arch Biochem Biophys. 2018; 644:29–36. ChuJ FuY XuJ ZhengX GuQ LuoX ATG4B inhibitor FMK-9a induces autophagy independent on its enzyme inhibition Arch Biochem Biophys 2018 644 29 36 10.1016/j.abb.2018.03.00129510087 Search in Google Scholar

Zhang W, Xu W, Chen W, Zhou Q. Interplay of autophagy inducer rapamycin and proteasome inhibitor mg132 in reduction of foam cell formation and inflammatory cytokine expression. Cell Transplant. 2018; 27:1235–48. ZhangW XuW ChenW ZhouQ Interplay of autophagy inducer rapamycin and proteasome inhibitor mg132 in reduction of foam cell formation and inflammatory cytokine expression Cell Transplant 2018 27 1235 48 10.1177/0963689718786229643446830001636 Search in Google Scholar

Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem. 2011; 286:40002–12. HuangS YangZJ YuC SinicropeFA Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1 J Biol Chem 2011 286 40002 12 10.1074/jbc.M111.297432322058521949121 Search in Google Scholar

Chang L, Huang Z, Li S, Yao Z, Bao H, Wang Z, et al. A low dose of AZD8055 enhances radiosensitivity of nasopharyngeal carcinoma cells by activating autophagy and apoptosis. Am J Cancer Res. 2019; 9:1922–37. ChangL HuangZ LiS YaoZ BaoH WangZ A low dose of AZD8055 enhances radiosensitivity of nasopharyngeal carcinoma cells by activating autophagy and apoptosis Am J Cancer Res 2019 9 1922 37 Search in Google Scholar

Bao J, Liu B, Wu C. The prospects of therapeutic potential and drug development targeting autophagy in cancer. Autophagy: biology and diseases: Springer; 2020, p. 663–79. In: Li W, editor. Autophagy: biology and diseases. Beijing: Science Press, and Singapore: Springer Nature; 2020, p. 663–79. (Crusio WE, Lambris JD, Rezaei N, series editors, Adv Exp Med Biol., vol. 1207). doi: 10.1007/978-981-15-4272-5_49 BaoJ LiuB WuC The prospects of therapeutic potential and drug development targeting autophagy in cancer. Autophagy: biology and diseases Springer 2020 663 79 In: LiW editor. Autophagy: biology and diseases Beijing Science Press Singapore Springer Nature 2020 663 79 (Crusio WE, Lambris JD, Rezaei N, series editors, Adv Exp Med Biol., vol. 1207). 10.1007/978-981-15-4272-5_4932671784 Open DOISearch in Google Scholar

Abu el Maaty MA, Wölfl S. Vitamin D as a novel regulator of tumor metabolism: insights on potential mechanisms and implications for anti-cancer therapy. Int J Mol Sci. 2017; 18:2184. doi: 10.3390/ijms18102184 Abu el MaatyMA WölflS Vitamin D as a novel regulator of tumor metabolism: insights on potential mechanisms and implications for anti-cancer therapy Int J Mol Sci 2017 18 2184 10.3390/ijms18102184566686529048387 Open DOISearch in Google Scholar

Tian Y, Song W, Li D, Cai L, Zhao Y. Resveratrol as a natural regulator of autophagy for prevention and treatment of cancer. Onco Targets Ther. 2019; 12:8601–9. TianY SongW LiD CaiL ZhaoY Resveratrol as a natural regulator of autophagy for prevention and treatment of cancer Onco Targets Ther 2019 12 8601 9 10.2147/OTT.S213043680253931802896 Search in Google Scholar

Lin S-R, Fu Y-S, Tsai M-J, Cheng H, Weng C-F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int J Mol Sci. 2017; 18:1412. doi: 10.3390/ijms18071412 LinS-R FuY-S TsaiM-J ChengH WengC-F Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy Int J Mol Sci 2017 18 1412 10.3390/ijms18071412553590428671583 Open DOISearch in Google Scholar

Liu T, Zhang J, Li K, Deng L, Wang H. Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy. Front Pharmacol. 2020; 11:408. doi: 10.3389/fphar.2020.00408 LiuT ZhangJ LiK DengL WangH Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy Front Pharmacol 2020 11 408 10.3389/fphar.2020.00408715697032322202 Open DOISearch in Google Scholar

Wang X, Li Y, Jia F, Cui X, Pan Z, Wu Y. Boosting nutrient starvation-dominated cancer therapy through curcumin-augmented mitochondrial Ca2+ overload and obatoclax-mediated autophagy inhibition as supported by a novel nano-modulator GO-Alg@CaP/CO. J Nanobiotechnology. 2022; 20:225. doi: 10.1186/s12951-022-01439-0 WangX LiY JiaF CuiX PanZ WuY Boosting nutrient starvation-dominated cancer therapy through curcumin-augmented mitochondrial Ca2+ overload and obatoclax-mediated autophagy inhibition as supported by a novel nano-modulator GO-Alg@CaP/CO J Nanobiotechnology 2022 20 225 10.1186/s12951-022-01439-0909704635551609 Open DOISearch in Google Scholar

Mani J, Vallo S, Rakel S, Antonietti P, Gessler F, Blaheta R, et al. Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (−)-Gossypol (AT-101). BMC Cancer. 2015; 15:224. doi: 10.1186/s12885-015-1239-4 ManiJ ValloS RakelS AntoniettiP GesslerF BlahetaR Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (−)-Gossypol (AT-101) BMC Cancer 2015 15 224 10.1186/s12885-015-1239-4440972525885284 Open DOISearch in Google Scholar

Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015; 100:345–56. YuanN SongL ZhangS LinW CaoY XuF Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia Haematologica 2015 100 345 56 10.3324/haematol.2014.113324434927325512644 Search in Google Scholar

Kumar A, Singh UK, Chaudhary A. Targeting autophagy to overcome drug resistance in cancer therapy. Future Med Chem. 2015; 7:1535–42. KumarA SinghUK ChaudharyA Targeting autophagy to overcome drug resistance in cancer therapy Future Med Chem 2015 7 1535 42 10.4155/fmc.15.8826334206 Search in Google Scholar

Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014; 74:647–51. GewirtzDA The four faces of autophagy: implications for cancer therapy Cancer Res 2014 74 647 51 10.1158/0008-5472.CAN-13-296624459182 Search in Google Scholar

Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013; 4:e838. doi: 10.1038/cddis.2013.350 SuiX ChenR WangZ HuangZ KongN ZhangM Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment Cell Death Dis 2013 4 e838 10.1038/cddis.2013.350382466024113172 Open DOISearch in Google Scholar

Zarzynska JM. The importance of autophagy regulation in breast cancer development and treatment. Biomed Res Int. 2014; 2014:710345. doi: 10.1155/2014/710345 ZarzynskaJM The importance of autophagy regulation in breast cancer development and treatment Biomed Res Int 2014 2014 710345 10.1155/2014/710345418206825317422 Open DOISearch in Google Scholar

Eberhart K, Oral O, Gozuacik D. Chapter 13. Induction of autophagic cell death by anticancer agents. In: Hayat MA, editor. Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging vol. 1: molecular mechanisms. San Diego: Academic Press Elsevier; 2014, p. 179–202. EberhartK OralO GozuacikD Chapter 13. Induction of autophagic cell death by anticancer agents In: HayatMA editor. Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging vol. 1: molecular mechanisms San Diego Academic Press Elsevier 2014 179 202 10.1016/B978-0-12-405530-8.00013-3 Search in Google Scholar

Munson MJ, Ganley IG. MTOR, PIK3C3, and autophagy: signaling the beginning from the end. Autophagy. 2015; 11:2375–6. MunsonMJ GanleyIG MTOR, PIK3C3, and autophagy: signaling the beginning from the end Autophagy 2015 11 2375 6 10.1080/15548627.2015.1106668483521126565689 Search in Google Scholar

Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010; 1804:433–9. DowlingRJ TopisirovicI FonsecaBD SonenbergN Dissecting the role of mTOR: lessons from mTOR inhibitors Biochim Biophys Acta 2010 1804 433 9 10.1016/j.bbapap.2009.12.00120005306 Search in Google Scholar

Rahman MA, Rahman MDH, Hossain MS, Biswas P, Islam R, Uddin MJ, et al. Molecular insights into the multifunctional role of natural compounds: autophagy modulation and cancer prevention. Biomedicines. 2020; 8:517. doi: 10.3390/biomedicines8110517 RahmanMA RahmanMDH HossainMS BiswasP IslamR UddinMJ Molecular insights into the multifunctional role of natural compounds: autophagy modulation and cancer prevention Biomedicines 2020 8 517 10.3390/biomedicines8110517769959633228222 Open DOISearch in Google Scholar

Ramlee MK, Wang J, Toh WX, Li S. Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes. 2016; 7:50. doi: 10.3390/genes7080050 RamleeMK WangJ TohWX LiS Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene Genes 2016 7 50 10.3390/genes7080050499983827548225 Open DOISearch in Google Scholar

Yang R, Dong H, Jia S, Yang Z. Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy. Clin Transl Oncol. 2022; 24:1219–30. YangR DongH JiaS YangZ Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy Clin Transl Oncol 2022 24 1219 30 10.1007/s12094-021-02770-y35038152 Search in Google Scholar

Vela L, Marzo I. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol. 2015; 23:74–81. VelaL MarzoI Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside Curr Opin Pharmacol 2015 23 74 81 10.1016/j.coph.2015.05.01426079328 Search in Google Scholar

Paskeh MD, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV, et al. Targeted regulation of autophagy using nanoparticles: new insight into cancer therapy. Biochim Biophys Acta Mol Basis Dis. 2022; 1868:166326. doi: 10.1016/j.bdadis.2021.166326 PaskehMD EntezariM ClarkC ZabolianA RanjbarE FarahaniMV Targeted regulation of autophagy using nanoparticles: new insight into cancer therapy Biochim Biophys Acta Mol Basis Dis 2022 1868 166326 10.1016/j.bdadis.2021.166326 Open DOISearch in Google Scholar

Kadkhoda J, Tarighatnia A, Tohidkia MR, Nader ND, Aghanejad A. Photothermal therapy-mediated autophagy in breast cancer treatment: progress and trends. Life Sci. 2022; 25:120499. doi: 10.1016/j.lfs.2022.120499 KadkhodaJ TarighatniaA TohidkiaMR NaderND AghanejadA Photothermal therapy-mediated autophagy in breast cancer treatment: progress and trends Life Sci 2022 25 120499 10.1016/j.lfs.2022.12049935346674 Open DOISearch in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine