1. bookVolume 1 (2017): Issue 1 (January 2017)
Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
access type Open Access

Structures of cell-wall glycopolymers of Lactococcus lactis BIM B-1024

Journal Details
License
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English
Abstract

Glycopolymers of two types were isolated from the cell wall of Lactococcus lactis BIM B-1024 by stepwise extraction with cold and hot 10% CCl3CO2H and separated by anion-exchange gel chromatography. The following structures of the glycopolymers were established by sugar analysis, dephosphorylation with 48% HF, 1D and 2D NMR spectroscopy, and ESI-MS:

β-D-Galp-(1→4)-β-D-Glcp-(1→6)┐

→4)-β-D-Galp-(1→4)-β-D-Glcp-(1→4)-α-D-Glcp-(1→ PSI

β-D-Glcp-(1→3)┐

→60-α-D-GalpNAc-(1→3)-β-D-GalpNAc-(1→5)-Rib-ol-1-P-(O→ PSII

β-D-Glcp-(1→4)┘

Polysaccharides with the same or similar structures to PSI have been found earlier in various Lactobacillus species, whereas, to our knowledge, the structure of PSII is new.

1. Marco ML, Pavan S, Kleerebezem M. Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol 2006; 17:204-10.10.1016/j.copbio.2006.02.005Search in Google Scholar

2. McNaught CE, MacFie J. Probiotics in clinical practice: a critical review of the evidence. Nutr Res 2001; 21: 343-53.10.1016/S0271-5317(00)00286-4Open DOISearch in Google Scholar

3. Samarzija D, Antunac N, Havranek JL. Taxonomy, physiology and growth of Lactococcus lactis: a review. Mjekarstvo 2001; 51(1): 35-48.Search in Google Scholar

4. De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 1999: 23: 153-77.10.1111/j.1574-6976.1999.tb00395.x10234843Open DOISearch in Google Scholar

5. Kelleher P, Murphy J, Mahony J, Van Sinderen D. Next-generation sequencing as an approach to dairy starter selection. Dairy Sci Technol 2015; 95: 545-68.10.1007/s13594-015-0227-4471222526798445Search in Google Scholar

6. Deveau H, Labrie SJ, Chopin MC, Moineau S. Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 2006; 72(6): 4338-46.10.1128/AEM.02517-05148959516751549Search in Google Scholar

6. Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry.10.1016/j.tifs.2003.09.004Open DOISearch in Google Scholar

7. Perdigo G, Galdeano CM, Valdez JC, Medici M. Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 2002; 56(4): 21-6.10.1038/sj.ejcn.160165812556943Search in Google Scholar

8. Novik G, Sidarenka A, Kiseleva E, Kolomiets E, Szwajcer Dey E. Probiotics. in: Biotransformation of waste biomass into high value biochemicals / S.K. Brar et al. (eds.) - New York: Springer Science+Business Media 2014: 187-235.10.1007/978-1-4614-8005-1_9Search in Google Scholar

9. Rakhuba D, Novik G, Dey ES. Application of supercritical carbon dioxide (scCO2) for the extraction of glycolipids from Lactobacillus plantarum B-01. J Supercrit Fluids 2009; 49(1): 45-51.10.1016/j.supflu.2008.11.016Search in Google Scholar

10. Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 1991; 173(12): 3879-87.10.1128/jb.173.12.3879-3887.19912080201904860Search in Google Scholar

11. Vinderola CG, Mocchiutti P, Reinheimer JA. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J Dairy Sci 2002; 85: 721-9.10.3168/jds.S0022-0302(02)74129-5Search in Google Scholar

12. Masood MI, Qadir MI, Shirazi JH, Khan IU. Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 2011; 37(1): 91-8.10.3109/1040841X.2010.536522Search in Google Scholar

13. Kimoto H, Ohmomo S, Okamoto T. Cholesterol removal from media by lactococci. J Dairy Sci 2002; 85(12): 3182-8.10.3168/jds.S0022-0302(02)74406-8Search in Google Scholar

14. Klijn N, Weerkamp HA, de Vos WM. Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol 1995; 61(7): 2771-4.10.1128/aem.61.7.2771-2774.1995Search in Google Scholar

15. Chopin A, Bolotin A, Sorokin A, Dusko Ehrlich S, Chopin MC. Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 2001; 29(3): 644-51.10.1093/nar/29.3.644Search in Google Scholar

16. Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P. Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int Dairy J 2002; 12: 689-95.10.1016/S0958-6946(01)00161-3Open DOISearch in Google Scholar

18. Looijesteijn PJ , Trapet L , De Vries E , Abee T, Hugenholtz J. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 2001; 64: 71-80.10.1016/S0168-1605(00)00437-2Search in Google Scholar

19. Streshinskaya GM, Naumova IB, Panina LI. Chemical-composition of the cell-wall of streptomyces-chrysomallus, forming the antibiotic aurantin. Microbiology 1979; 48: 814-9 (in Russian).Search in Google Scholar

20. Leontein K, Lönngren J. Determination of the absolute configuration of sugars by gas-liquid chromatography of their acetylated 2-octyl glycosides. Methods Carbohydr Chem 1993; 9: 87-9.Search in Google Scholar

21. Belyakov PA, Kadentsev VI, Chizhov AO, Kolotyrkina NG, Shashkov AS, Ananikov VP. Mechanistic insight into organic and catalytic reactions by joint studies using mass spectrometry and NMR spectroscopy. Mendeleev Commun 2010; 20: 125-31.10.1016/j.mencom.2010.05.001Open DOISearch in Google Scholar

22. Bock K, Pedersen C. Carbon-13 Nuclear magnetic resonance spectroscopy of monosaccharides. Adv Carbohydr Chem Biochem 1983; 41: 27-66.10.1016/S0065-2318(08)60055-4Search in Google Scholar

23. Faber EJ, Kamerling JP, Vliegenthart JFG. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp bulgaricus 291. Carbohydr Res 2001; 331(2): 183-9410.1016/S0008-6215(01)00012-XSearch in Google Scholar

24. Van Casteren WHM, de Waard P, Dijkema C, Schols HA, Voragen AGJ. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactobacillus lactis subsp. cremoris B891. Carbohydr Res 2000; 327(4): 411-4210.1016/S0008-6215(00)00065-3Search in Google Scholar

25. Gorska S, Grycko P, Rybka J, Gamian A. Exopolysaccharides of lactic acid bacteria: structure and biosynthesis. Postepy Higieny i Medycyny Doświadczalnej (Polish) 2007; 61: 805-18Search in Google Scholar

26. Shashkov AS, Potekhina NV, Senchenkova SN, Kudryashova EB. Anionic polymers of the cell wall of Bacillus subtilis subsp. subtilis VKM B-501. Biochemistry (Moscow) 2009; 74; 543-8.10.1134/S0006297909050095Search in Google Scholar

27. Gruter M, Billy D, de Waard P, Kuiper J, Kamerling JP, Vliegenthart JFG. Structural studies on a cell wall polysaccharide preparation of Lactococcus lactis subspecies cremoris H414. J Carbohydr Chem1994; 13(3): 363-82.10.1080/07328309408009199Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo