Cite

Abels, S. (2015). Scaffolding inquiry-based science and chemistry education in inclusive classrooms. In N. L. Yates (Ed.), New developments in science education research (pp. 77–96). New York City: Nova Science Publishers. Search in Google Scholar

Abels, S., Koliander, B., Plotz, T., & Heidinger, C. (2018). Neon ist ein Gas und hat zwei Ringe - Zur Trennung der makroskopischen und submikroskopischen Ebene des Periodensystems [Neon is a gas and has two rings –Separating the macroscopic and submicroscopic level of the periodic table]. Chemkon, 25(6), 238–242. https://doi.org/10.1002/ckon.201800063 Search in Google Scholar

Abels, S., & Minnerop-Haeler, L. (2016). Lernwerkstatt: An Inclusive Approach in Science Education. In S. Markic, & S. Abels (Eds.), Science Education towards Inclusion (pp. 137–156). New York City: Nova Science Publishers. Search in Google Scholar

Ainscow, M. (2007). Taking an inclusive turn. Journal of Research in Special Educational Needs, 7(1), 3–7. https://doi.org/10.1111/j.1471-3802.2007.00075.x Search in Google Scholar

Allchin, D. (2013). Teaching the Nature of Science: Perspectives and Resources. Saint Paul: SHiPS Education Press. Search in Google Scholar

Booth, T. (2003). Inclusion and exclusion in the city: concepts and contexts. In P. Potts (Ed.), Inclusion in the City: Selection, schooling and community (pp. 1–14). London: Routledge Falmer. Search in Google Scholar

Booth, T., & Ainscow, M. (2016). The index for inclusion: A guide to school development led by inclusive values (Fourth edition). Cambridge: Index for Inclusion Network (IfIN). Search in Google Scholar

Bybee, R. W. (1997). Toward an understanding of scientific literacy. In W. Gräber, & C. Bolte (Eds.), Scientific literacy: An international symposium (pp. 37–69). Kiel: IPN-Leibniz Institute for Science and Mathematics Education. Search in Google Scholar

Chandrasegaran, A. L., Treagust, D. F., & Moderino, M. (2008). An evaluation of a teaching intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38, 237–248.10.1007/s11165-007-9046-9 Search in Google Scholar

Childs, P. E., & Ryan, M. (2016). Strategies for Teaching the Language of Science. In S. Markic, & S. Abels (Ed.), Education in a competitive and globalizing world. Science education towards inclusion (pp. 43–66). New York: Nova Science Publishers, Inc. Search in Google Scholar

Childs, P. E., Markic, S., & Ryan, M. C. (2015). The Role of Language in the Teaching and Learning of Chemistry. In J. Garcia-Martinez (Ed.), Chemistry education: Best practices, opportunities and trends (Vol. 4, pp. 421–446). Weinheim: Wiley-VCH. https://doi.org/10.1002/9783527679300.ch17 Search in Google Scholar

DeBoer, G. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching 37(6), 582-601.10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L Search in Google Scholar

Driver, R. (1981). Pupils’ alternative frameworks in science. European Journal of Science Education, 3(1), 93–101.10.1080/0140528810030109 Search in Google Scholar

Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction–A framework for improving teaching and learning science. In Science education research and practice in Europe (pp. 13-37). Brill Sense.10.1007/978-94-6091-900-8_2 Search in Google Scholar

Duit, R., & Treagust, D. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International journal of science education 25(6), 671–688.10.1080/09500690305016 Search in Google Scholar

Egbers, M. (2017). Konzeptentwicklungs- und Gesprächsprozesse im Rahmen der Unterrichtskonzeption “choice2learn”. Lernen in Naturwissenschaften, Band 1. Berlin: Logos. Search in Google Scholar

Florian, L., & Black-Hawkins, K. (2011). Exploring inclusive pedagogy. British Educational Research Journal, 37(5), 813–828.10.1080/01411926.2010.501096 Search in Google Scholar

Florian, L., & Spratt, J. (2013). Enacting inclusion: a framework for interrogating inclusive practice. European Journal of Special Needs Education, 28, 119–135. https://doi.org/10.1080/08856257.2013.778111 Search in Google Scholar

Foucault, M. (1980). Questions on Geography. Interview mit M. Foucault (geführt von den Hrsg. des Journal Hérodote). In C. Gordon (Ed.), Power/ Knowledge. Michel Foucault: Selected Interviews and Other Writings 1972-1977 (pp. 63-77). New York: Pantheon Books. Search in Google Scholar

GFD (2015). Position der Gesellschaft für Fachdidaktik zum inklusiven Unterricht unter fachdidaktischer Perspektive [Position of the Gesellschaft für Fachdidaktik on inclusive teaching from a didactic perspective]. Retrieved from http://www.fachdidaktik.org/wp-content/uploads/2015/09/GFD-Stellungnahme-zum-inklusiven-Unterricht-Stand-28.01.2017.pdf Search in Google Scholar

Gibbons, P. (2003), Mediating Language Learning: Teacher Interactions With ESL Students in a Content-Based Classroom. TESOL Quarterly, 37(2), 247-274.10.2307/3588504 Search in Google Scholar

Gottfried, A. E., Fleming, J. S., & Gottfried, A. W. (2001). Continuity of academic intrinsic motivation from childhood through late adolescence: A longitudinal study. Journal of Educational Psychology, 93(1), 3–13. https://doi.org/10.1037/0022-0663.93.1.3 Search in Google Scholar

Hodson, D. (2014). Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553. https://doi.org/10.1080/09500693.2014.899722 Search in Google Scholar

Höft, L., Bernholt, S., Blankenburg, J. S., & Winberg, M. (2019). Knowing more about things you care less about: Cross-sectional analysis of the opposing trend and interplay between conceptual understanding and interest in secondary school chemistry. Journal of Research in Science Teaching, 56(2), 184–210. https://doi.org/10.1002/tea.21475 Search in Google Scholar

Hundertmark, S. (2012). Einblicke in kollaborative Lernprozesse: eine Fallstudie zur reflektierenden Zusammenarbeit unterstützt durch die Methoden Concept Mapping und Lernbegleitbogen. Logos: Berlin. Search in Google Scholar

Jansen, M., Lüdtke, O., & Schroeders, U. (2016). Evidence for a positive relation between interest and achievement: Examining between-person and within-person variation in five domains. Contemporary Educational Psychology, 46, 116–127. https://doi.org/10.1016/j.cedpsych.2016.05.004 Search in Google Scholar

Johnstone, A.H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning 7, 75–83.10.1111/j.1365-2729.1991.tb00230.x Search in Google Scholar

Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94.10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-C Search in Google Scholar

Lederman, N. (2013). Nature of Science: Past, Present, and Future. In S. K. Abell, K. Appleton, & D. L. Hanuscin (Eds.), Handbook of Research on Science Education (pp. 831-880). New York: Routledge. Search in Google Scholar

Lee, O. (2005). Science Education and Student Diversity: Synthesis and Research Agenda. Journal of Education for Students Placed at Risk, 10(4), 433-440.10.1207/s15327671espr1004_5 Search in Google Scholar

Lee, O., & Luykx, A. (2007). Science Education and Student Diversity: Race/Ethnicity, Language, Culture and Socioeconomic Status. In:S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp.167-188). New York: Routledge. Search in Google Scholar

Lee, O., & Fradd, S. H. (1998). Science for all, including students from non-English-language backgrounds. Educational Researcher, 27, 12–21.10.3102/0013189X027004012 Search in Google Scholar

Mahaffy, P. (2004). The future shape of chemistry education. Chemistry Education: Research and Practice, 5(3), 229–245.10.1039/B4RP90026J Search in Google Scholar

Markic, S., & Childs, P. E. (2016). Language and the teaching and learning of chemistry. Chemistry Education Research and Practice, 17(3), 434–438. https://doi.org/10.1039/c6rp90006b Search in Google Scholar

Mastropieri, M. A., & Scruggs, T. E. (2014). The inclusive classroom: Strategies for effective differentiated instruction (Fifth edition). Boston: Pearson. Search in Google Scholar

McGinnis, J. R. (2013). Teaching Science to Learners With Special Needs. Theory Into Practice, 52(1), 43–50. https://doi.org/10.1080/07351690.2013.743776 Search in Google Scholar

Menthe, J., & Hoffmann, T. (2015). Inklusiver Chemieunterricht: Chance und Herausforderung [Inclusive Chemistry Lessons: Opportunity and Challenge]. In J. Riegert, & O. Musenberg (Eds.), Inklusiver Fachunterricht in der Sekundarstufe (pp. 131–140). Stuttgart: Kohlhammer. Search in Google Scholar

Millar, R. (2006). Twenty First Century Science: Insights from the Design and Implementation of a Scientific Literacy Approach in School Science. International Journal of Science Education, 28(13), 1499–1521. https://doi.org/10.1080/09500690600718344 Search in Google Scholar

Özdemir, G., & Clark, D. B. (2007). An Overview of Conceptual Change Theories. EURASIA Journal of Mathematics, Science & Technology Education, 3(4), 351–361.10.12973/ejmste/75414 Search in Google Scholar

Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: the role of motivational beliefs and classroom factors in the process of conceptual change. Review of Educational Research, 63(2), 167-199.10.3102/00346543063002167 Search in Google Scholar

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207 Search in Google Scholar

Price, J. F., Johnson, M., & Barnett, M. (2012). Universal Design for Learning in the Science Classroom. In T. E. Hall, A. Meyer, & D. H. Rose (Eds.), What Works for Special-Needs Learners. Universal design for learning in the classroom: Practical applications (pp. 55–70). New York: Guilford Publications, Inc. Search in Google Scholar

Roberts, D. A. (2007). Scientific Literacy / Science Literacy. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of Research on Science Education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates. Search in Google Scholar

Roberts, D. A., & Bybee, R. W. (2014). Scientific Literacy, Science Literacy, and Science Education. In N. G. Lederman, & S. K. Abell (Eds.), Handbook of Research on Science Education (pp. 545–558). New York, NY: Routledge. Search in Google Scholar

Rotgans, J. I., & Schmidt, H. G. (2017). The relation between individual interest and knowledge acquisition. British Educational Research Journal, 43(2), 350–371. https://doi.org/10.1002/berj.3268 Search in Google Scholar

Rott, L. & Marohn, A. (2015). Inklusiven Unterricht entwickeln und erproben – Eine Verbindung von Theorie und Praxis im Rahmen von Design-Based Research. Zeitschrift Für Inklusion, 4, Retrieved from http://www.inklusion-online.net/index.php/inklusion-online/article/view/325/277 Search in Google Scholar

Rott, L., & Marohn, A. (2018). Choice2explore – a teaching concept for inclusive science education in primary schools. In: O. Finlayson, E. McLoughlin, S. Erduran, & P. Childs, (Eds.), Proceedings of the 12th ESERA 2017 Conference, Research, practice and collaboration in science education (pp. 2194-2202). Dublin: Dublin City University. Search in Google Scholar

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–67.10.1006/ceps.1999.1020 Search in Google Scholar

Sander E., Jelemenská P., & Kattmann U. (2006). Towards a better understanding of ecology. Journal of Biological Education 40(3), 1–6.10.1080/00219266.2006.9656028 Search in Google Scholar

Schneeweiß, N., & Gropengießer, H. (2010). Organising Levels of Organisation for Biology Education: A Systematic Review of Literature, Education Sciences, 9, 207, doi:10.3390/educsci903020710.3390/educsci9030207 Search in Google Scholar

Scruggs, T. E., & Mastropieri, M. A. (2007). Science Learning in Special Education: The Case for Constructed Versus Instructed Learning. Exceptionality, 15, 57–74. https://doi.org/10.1080/09362830701294144 Search in Google Scholar

Scruggs, T. E., Mastropieri, M. A., Berkeley, S., & Graetz, J. E. (2010). Do Special Education Interventions Improve Learning of Secondary Content? A Meta-Analysis. Remedial and Special Education, 31(6), 437-449.10.1177/0741932508327465 Search in Google Scholar

Siegler, R., Eisenberg, N., DeLoache, J.S., Saffran, J., & Gershoff, E. (2017). How Children Develop. 5th Ed. New York: Worth Publ., Macmillan Learning. Search in Google Scholar

Sjöström, J. (2013). Towards Bildung-Oriented Chemistry Education. Science and Education, 22(7), 1873–1890. https://doi.org/10.1007/s11191-011-9401-0 Search in Google Scholar

Sjöström, J., Frerichs, N., Zuin, V. G., & Eilks, I. (2017). Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning. Studies in Science Education, 53(2), 165–192. https://doi.org/10.1080/03057267.2017.1384649 Search in Google Scholar

Sliwka, A. (2010). From homogeneity to diversity in German education. In OECD (Ed.), Educating Teachers for Diversity: Meeting the Challenge (pp. 205–217). OECD Publishing. Retrieved fromhttp://www.oecd.org/berlin/44911406.pdf Search in Google Scholar

Stefanich, G. P., & Hadzigeorgiou, Y. (2001). Models and Applications. In G. P. Stefanich (Ed.), Science Teaching in Inclusive Classrooms: Models & Applications (pp. 61–90). Cedar Falls, Iowa: Woolverton Printing Company. Search in Google Scholar

Stefanich, G. P., Keller Jr., E., Payne, C., & Davison, J. (2001). Classroom and Laboratory Modifications for Students with Disabilities. In G. P. Stefanich (Ed.), Science Teaching in Inclusive Classrooms: Models & Applications (pp. 1–60). Cedar Falls, Iowa: Woolverton Printing Company. Search in Google Scholar

Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chem. Educ. Res. Pract., 14, 156–168.10.1039/C3RP00012E Search in Google Scholar

Taber, K.S., & Riga, F. (2016). From each according to her capabilities; to each according to her needs: fully including the gifted school science education. In: S. Markic, & S. Abels (Eds), Science education towards inclusion (pp. 195-219). New York: Nova Publishing. Search in Google Scholar

Tiberghien, A. (1980). Modes and conditions of learning: The learning of some aspects of the concept of heat. In W. Archenhold, R. Driver, A. Orton, & C. Wood-Robinson (Eds.), Cognitive development research in science and mathematics: Proceedings of an international symposium (pp. 288-309). Leeds, UK: University of Leeds. Search in Google Scholar

Tomaševski, K. (2001). Human rights obligations: making education available, accessible, acceptable and adaptable. (Right to Education Primers No. 3). Stockholm: Sida. Search in Google Scholar

Treagust, D. F., Duit, R., & Nieswandt, M. (2000). Sources of students’ difficulties in learning chemistry. Educación Química 11(2), 228-235.10.22201/fq.18708404e.2000.2.66458 Search in Google Scholar

UNESCO. (2005). Guidelines for Inclusion: Ensuring Access to Education for All. Retrieved fromhttp://unesdoc.unesco.org/images/0014/001402/140224e.pdf Search in Google Scholar

United Nations. (2006). UN-Convention on the Rights of Persons with Disabilities and Optional Protocol. Retrieved from https://www.un.org/development/desa/disabilities/convention-on-the-rights-of-persons-with-disabilities.html Search in Google Scholar

Vosniadou, S. (1999). Conceptual change research: The state of the art and future directions. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp. 1–13). Amsterdam, The Netherlands: Pergamon. Search in Google Scholar

Walkowiak, M., Rott, L., Abels, S., & Nehring, A. (2018). Network and work for inclusive science education. In I. Eilks, S. Markic, & B. Ralle (Eds.), Building bridges across disciplines (pp. 269–274). Aachen: Shaker. Search in Google Scholar

Wandersee, J., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning. A project of the National Science Teachers Association. (pp.177-210). New York, NY: Macmillan. Search in Google Scholar

Wellington, J. J., & Osborne, J. (2009). Language and literacy in science education (Reprinted 2009). Buckingham: Open Univ. Press. Search in Google Scholar

White, K. R. (1982). The Relation Between Socioeconomic Status and Academic Achievement. Psychological Bulletin, 91;(3), 461-481.10.1037/0033-2909.91.3.461 Search in Google Scholar

eISSN:
2616-7697
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Social Sciences, Education, Curriculum and Pedagogy, other