Open Access

Digital Survey of Damages on the Façade of a Historical Building


Cite

Bernat, M., Byzdra, A., Chmielecki, M., Laskowski, P., Orzechowski, J., Rzepa, S., Szulwic, J. & Ziółkowski P. (2016). Zastosowanie naziemnego skaningu laserowego i przetwarzanie danych: inwentaryzacja i inspekcja obiektów budowlanych. Przegląd technologii i przykłady zastosowań. Gdańsk: Wydawnictwo Polskiego Inter-netowego Informatora Geodezyjnego. Search in Google Scholar

Ćmielewski, B. (2011). Identification deformation areas of slops using terrestrial laser scanner-preliminary research. In Proceedings of the 13th Professional Conference of Postgraduate Students (Juniorstav 2011). Brno: Akademické nakladatelství CERM. Search in Google Scholar

Franceschi, M., Teza, G., Preto, N., Pesci, A., Galgaro, A. & Girardi, S. (2009). Discrimination between marls and limestone using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (6), 522–528. https://doi.org/10.1016/j.isprsjprs.2009.03.00310.1016/j.isprsjprs.2009.03.003 Search in Google Scholar

Janowski, A., Nagrodzka-Godycka, K., Szulwic, J. & Ziolkowski, P. (2016). Remote sensing and photogrammetry techniques in diagnostics of concrete structures. Computers and Concrete, 18 (3), 405–420. https://doi.org/10.12989/cac.2016.18.3.40510.12989/cac.2016.18.3.405 Search in Google Scholar

Kaspar, M., Pospisil, J., Stroner, M., Kremen, T. & Tejkal, M. (2004). Laser Scanning in civil engineering and land surveying. Hradec Králové: Vega. Search in Google Scholar

Pawłowicz, J. A. (2017). Importance of Laser Scanning Resolution in the Process of Recreating the Architectural Details of Historical Buildings. IOP Conference Series: Materials Science and Engineering, 245 (5), 052038. https://doi.org/10.1088/1757-899X/245/5/05203810.1088/1757-899X/245/5/052038 Search in Google Scholar

Pawłowicz, J. A., Bilko, P., Sawczyński, S. & Szafranko, E. (2017). Diagnostic of Geometry Distortion of a Wooden Structure Based on a Point Cloud. In 2017 Baltic Geodetic Congress (BGC Geomatics) (pp. 163–168). IEEE. https://doi.org/10.1109/BGC.Geomatics.2017.5510.1109/BGC.Geomatics.2017.55 Search in Google Scholar

Szafranko, E. (2014). Ways to determine criteria in multi-criteria methods applied to assessment of variants of a planned building investment. Czasopismo Techniczne. Budownictwo, 2-B (6), 41–48. https://doi.org/10.4467/2353737XCT.14.110.2560 Search in Google Scholar

Van Genechten, B. & Schueremans, L. (2009) Laserscanning for heritage documentation. Wiadomości Konserwatorskie, 26, 727–737. Search in Google Scholar

Wehr, A. & Lohr, U. (1999). Airborne laser scanning – an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54 (2–3), 68–82. https://doi.org/10.1016/S0924-2716(99)00011-810.1016/S0924-2716(99)00011-8 Search in Google Scholar

Wujanz, D., Burger, M., Tschirschwitz, F., Nietzschmann, T., Neitzel, F. & Kersten, T. (2018). Determination of Intensity-Based Stochastic Models for Terrestrial Laser Scanners Utilising 3D-Point Clouds. Sensors, 18 (7), 2187. https://doi.org/10.3390/s1807218710.3390/s18072187 Search in Google Scholar

Zaczek-Peplinska, J., Góra, A. & Grzyb, M. (2015). Analiza statystyczna wartości Intensity (TLS) zarejestrowanych na powierzchni konstrukcji betonowej. In M. Kwaśniak (Ed.), Techniki inwentaryzacji i monitoringu obiektów inżynierskich (pp. 90–105). Warszawa, Wydział Geodezji i Kartografii Politechniki Warszawskiej. Search in Google Scholar

eISSN:
2544-1760
Language:
English