Cite

Fig. 1

Temporal evolution of the predator–prey system for m = 0.2: (A) prey and (B) predator.
Temporal evolution of the predator–prey system for m = 0.2: (A) prey and (B) predator.

Fig. 2

Phase portrait of the predator–prey system for m = 0.2.
Phase portrait of the predator–prey system for m = 0.2.

Fig. 3

Temporal evolution of the predator–prey system for m = 0.4: (A) prey and (B) predator.
Temporal evolution of the predator–prey system for m = 0.4: (A) prey and (B) predator.

Fig. 4

Phase portrait of the predator–prey system for m =0.4.
Phase portrait of the predator–prey system for m =0.4.

Fig. 5

Temporal evolution of the predator–prey system for m = 0.6: (A) prey and (B) predator.
Temporal evolution of the predator–prey system for m = 0.6: (A) prey and (B) predator.

Fig. 6

Phase portrait of the predator–prey system for m = 0.6.
Phase portrait of the predator–prey system for m = 0.6.

Fig. 7

Circuit design of the x2 function within MultiSIM software.
Circuit design of the x2 function within MultiSIM software.

Fig. 8

Circuit design of the x3 function within MultiSIM software.
Circuit design of the x3 function within MultiSIM software.

Fig. 9

Simulation results of the x2 function with MultiSIM Software.
Simulation results of the x2 function with MultiSIM Software.

Fig. 10

Simulation results of the x3 function with MultiSIM Software.
Simulation results of the x3 function with MultiSIM Software.

Fig. 11

Electronic circuit of the x2 function.
Electronic circuit of the x2 function.

Fig. 12

Electronic circuit of the x3 function.
Electronic circuit of the x3 function.

Fig. 13

Experimental results of x2 function.
Experimental results of x2 function.

Fig. 14

Experimental results of x3 function.
Experimental results of x3 function.

Fig. 15

Circuit design of the predator–prey system for m = 0.2.
Circuit design of the predator–prey system for m = 0.2.

Fig. 16

Temporal evolution via MultiSIM software (m = 0.2).
Temporal evolution via MultiSIM software (m = 0.2).

Fig. 17

Phase portrait via MultiSIM software (m = 0.2).
Phase portrait via MultiSIM software (m = 0.2).

Fig. 18

Circuit design of the predator–prey system for m = 0.4.
Circuit design of the predator–prey system for m = 0.4.

Fig. 19

Temporal evolution via MultiSIM software (m = 0.4).
Temporal evolution via MultiSIM software (m = 0.4).

Fig. 20

Phase portrait via MultiSIM software (m = 0.4).
Phase portrait via MultiSIM software (m = 0.4).

Fig. 21

Circuit design of the predator–prey system for m = 0.6.
Circuit design of the predator–prey system for m = 0.6.

Fig. 22

Temporal evolution via MultiSIM software (m = 0.6).
Temporal evolution via MultiSIM software (m = 0.6).

Fig. 23

Phase portrait via MultiSIM software (m = 0.6).
Phase portrait via MultiSIM software (m = 0.6).

Fig. 24

STM3278 Technology.
STM3278 Technology.

Fig. 25

Experimental temporal evolution (m = 0.2).
Experimental temporal evolution (m = 0.2).

Fig. 26

Experimental phase portrait (m = 0.2).
Experimental phase portrait (m = 0.2).

Fig. 27

Experimental temporal evolution (m = 0.4).
Experimental temporal evolution (m = 0.4).

Fig. 28

Experimental phase portrait (m = 0.4).
Experimental phase portrait (m = 0.4).

Fig. 29

Experimental temporal evolution (m = 0.6).
Experimental temporal evolution (m = 0.6).

Fig. 30

Experimental phase portrait (m = 0.6).
Experimental phase portrait (m = 0.6).

Predator–prey model analysis.

Equilibrium Singularities Phase portraits
eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other