Cite

S.M. Miller, J. B. Rawlings, “Model identification and control strategies for batch cooling crystallizers”, A. I. Ch. E. Journal, Vol. 40, 1994, pp. 1312-1327.10.1002/aic.690400805 Search in Google Scholar

Y.D. Lang, A. M. Cervantes, L. T. Biegler, “Dynamic optimization of a batch cooling crystallization process”, Industrial and Engineering Chemistry Research, Vol. 38, 1999, pp. 1469-1477.10.1021/ie980585u Search in Google Scholar

V.Gamez-Garci, H.F. Flores-Mejia, J. Ramirez-Muñz, H. Puebla, “Dynamic optimization and robust control of batch crystallization”, Procedia Engineering, Vol. 42, 2012, pp.471481.10.1016/j.proeng.2012.07.438 Search in Google Scholar

A. Fiordalis, C. Georgakis, “Data-driven, using design of dynamic experiments, versus model-driven optimization of batch crystallization processes”, Journal of Process Control, Vol.23, No. 2, 2013, pp. 179-188.10.1016/j.jprocont.2012.08.011 Search in Google Scholar

H. Seki, N. Furuya, S. Hoshino, “Evaluation of controlled cooling for seeded batch crystallization incorporating dissolution”, Chemical Engineering Science, Vol. 77, No. 30, 2012, pp. 10-17.10.1016/j.ces.2012.01.057 Search in Google Scholar

A. Gharsallaoui, B. Roge, M. Mathlouthi, “Study of batch maltitol (4-O-α-D-glucopyranosyl-D-glucitol) crystallization by cooling and water evaporation”, Journal of Crystal Growth, Vol. 312, No. 21, 2010, pp. 3183-3190.10.1016/j.jcrysgro.2010.08.005 Search in Google Scholar

S.M. Lee, K.Y.Kim, S.W. Kim, “Multi-objective optimization of a double-faced typeprinted circuit heat exchanger”, Applied Thermal Engineering, Vol. 60, No. 1-2, 2013, pp. 44-50.10.1016/j.applthermaleng.2013.06.039 Search in Google Scholar

A. Suharjono, Wirawan, G. Hendrantoro, “A new unequal clustering algorithm using energy-balanced area partitioning for wireless sensor networks”, International Journal on Smart Sensing and Intelligent Systems, Vol. 6, No. 5, 2013, pp. 1808-1829.10.21307/ijssis-2017-616 Search in Google Scholar

M. Barrett, M. McNamara, H. X. Hao, P. Barrett, B. Glennon, “Supersaturation tracking for the development, optimization and control of crystallization processes”, Chemical Engineering Research and Design, Vol. 88, No. 8, 2010, pp. 1108-1119.10.1016/j.cherd.2010.02.010 Search in Google Scholar

L. A. Paz Suárez, P. Georgieva, S. F. de Azevedo, “Nonlinear MPC for fed-batch multiple stages sugar crystallization”, Chemical Engineering Research and Design, Vol. 89, No. 6, 2011, pp.753-767.10.1016/j.cherd.2010.10.010 Search in Google Scholar

H. Takiyama, “Supersaturation operation for quality control of crystalline particles in solution crystallization”, Advanced Powder Technology, Vol. 23, No. 3, 2012, pp. 273-278.10.1016/j.apt.2012.04.009 Search in Google Scholar

Y. Meng, X. Yu, H. He, et al, “Knowledge-based modeling for predicting cane sugar crystallization state”, International Journal on Smart Sensing and Intelligent Systems,Vol.7, 2014, 942-965.10.21307/ijssis-2017-689 Search in Google Scholar

D.J. Widenski, A. Abbas, J.A. Romagnoli, “A model-based nucleation study of the combined effect of seed properties and cooling rate in cooling crystallization”, Computers and Chemical Engineering, Vol. 35, No. 12, 2011, pp. 2696-2705.10.1016/j.compchemeng.2010.11.002 Search in Google Scholar

Y. Meng, K. Zheng, W. Li, et al, “Design and implementation of intelligent integrated measuring and controlling system for sugar cane crystallization process”, International Journal on Smart Sensing and Intelligent Systems, Vol. 8, No.3, 2015, pp.1687-1705.10.21307/ijssis-2017-825 Search in Google Scholar

Z. Y. Zhang, K. Hidajat, A. K. Ray, M. Morbidelli, “Multi-objective optimization of SMB and varicol process for chiral separation”, A. I. Ch. E. Journal, Vol.48, No.12, 2002, pp. 2800-2816.10.1002/aic.690481209 Search in Google Scholar

K. L. Choong, R. Smith, “Optimization of batch cooling crystallization”, Chemical Engineering Science, Vol.59, No.12, 2004, pp. 313-327.10.1016/j.ces.2003.09.025 Search in Google Scholar

K. L. Choong, R. Smith, “Novel strategies for optimization of batch, semi-batch and heating/cooling evaporative crystallization”, Chemical Engineering Science, Vol.59, No.12, 2004, pp. 329-343.10.1016/j.ces.2003.09.024 Search in Google Scholar

J. Wu, J. Wang, T. Yu, et al, “An Approach to Continuous Approximation of Pareto Front Using Geometric Support Vector Regression for Multi-objective Optimization of Fermentation Process”, Chinese Journal of Chemical Engineering, Vol. 22, No. 10, 2014, pp.1131-1140.10.1016/j.cjche.2014.09.003 Search in Google Scholar

S. Fazlollahi, S. L. Bungener, G. Becker, et al, “Multi-objective, multi-period optimization of renewable technologies and storage system Using evolutionary algorithms and mixed integer linear programming (MILP) “, Computer Aided Chemical Engineering, Vol. 31, No.10, 2012, pp. 890-894.10.1016/B978-0-444-59506-5.50009-2 Search in Google Scholar

J. Wang, M. Wang, M. Li, et al, “Multi-objective optimization design of condenser in an organic Rankine cycle for low grade waste heat recovery using evolutionary algorithm”, International Communications in Heat and Mass Transfer, Vol. 45, No.10, 2013, pp.47-54.10.1016/j.icheatmasstransfer.2013.04.014 Search in Google Scholar

K. Deb, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, Vol.6, No. 2, 2002, pp. 182-197.10.1109/4235.996017 Search in Google Scholar

P. Georgieva, M.J. Meireles, SF. de Azevedo, “Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena”, Chemical Engineering Science, Vol.58, No. 16, 2003, pp. 3699-3713.10.1016/S0009-2509(03)00260-4 Search in Google Scholar

H.M. Hulburt, S. Katz, “Some problems in particle technology: A statistical mechanical formulation”, Chemical Engineering Science, Vol.19, No. 8, 1964, pp. 555-574.10.1016/0009-2509(64)85047-8 Search in Google Scholar

A. D. Randoph, M. A. Larson, “Theory of particulate processes, analysis and techniques of continuous crystallization”, Academic Press Publisher, New York, America, 1971. Search in Google Scholar

D. Sarkar, S. Rohani, A. Jutan, “Multi-objective optimization of seeded batch crystallization processes”, Chemical Engineering Science Vol.61, No. 16, 2006, pp. 5282-5295.10.1016/j.ces.2006.03.055 Search in Google Scholar

N. Srinivas, K. Deb, “Muiltiobjective optimization using nondominated sorting in genetic algorithms”, Evolutionary Computation, Vol.2, No. 3, 1994, pp. 221-248.10.1162/evco.1994.2.3.221 Search in Google Scholar

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, Vol.6, No. 2, 2002, pp. 182-197.10.1109/4235.996017 Search in Google Scholar

A. Zhou, B. Y. Qu, H. Li, et al, “Multiobjective evolutionary algorithms: A survey of the state of the art,” Swarm and Evolutionary Computation, Vol.1, No.1, 2011, pp.32-49.10.1016/j.swevo.2011.03.001 Search in Google Scholar

C. E. Shannon, W. Weaver, “The Mathematical Theory of Communication”, University of Illinois Press Publisher, America, 1949. Search in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other