Open Access

Image Transformation Based on Generative Adversarial Networks

 and   
Oct 08, 2019

Cite
Download Cover

Yilun Lin, Xingyuan Dai, li Li, et al. The new frontier of artificial intelligence research:generative adversarial networks[J]. IEEE/CAA Journal of Automatica Sinica (JAS), 2018, 44(05):775-792. Yilun Lin Xingyuan Dai li Li The new frontier of artificial intelligence research:generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS) 2018 44(05):775 792 Search in Google Scholar

Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. Srivastava N Hinton G Krizhevsky A Dropout: a simple way to prevent neural networks from overfitting[J] The Journal of Machine Learning Research 2014 15(1): 1929 1958 Search in Google Scholar

Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2414-2423. Gatys L A Ecker A S Bethge M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016 2414 2423 10.1109/CVPR.2016.265 Search in Google Scholar

Kunfeng Wang, Chao Gou, Yanjie Duan, et al. Research progress and prospect of Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS), 2017, 43(03):321-332. Kunfeng Wang Chao Gou Yanjie Duan Research progress and prospect of Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS) 2017 43(03):321 332 Search in Google Scholar

Bengio Y, Laufer E, Alain G, et al. Deep generative stochastic networks trainable by backprop[C]//International Conference on Machine Learning. 2014: 226-234. Bengio Y Laufer E Alain G Deep generative stochastic networks trainable by backprop[C]//International Conference on Machine Learning 2014 226 234 Search in Google Scholar

Opper M, Archambeau C. The variational Gaussian approximation revisited[J]. Neural computation, 2009, 21(3): 786-792. Opper M Archambeau C. The variational Gaussian approximation revisited[J] Neural computation 2009 21(3): 786 792 10.1162/neco.2008.08-07-59218785854 Search in Google Scholar

Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680. Goodfellow I Pouget-Abadie J Mirza M Generative adversarial nets[C]//Advances in neural information processing systems 2014 2672 2680 Search in Google Scholar

Ratliff L J, Burden S A, Sastry S S. Characterization and computation of local nash equilibria in continuous games[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2013: 917-924. Ratliff L J Burden S A Sastry S S. Characterization and computation of local nash equilibria in continuous games[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton) IEEE 2013 917 924 10.1109/Allerton.2013.6736623 Search in Google Scholar

Xianlun Tang, Yiming Du, Yuwei Liu et al. An image recognition method based on conditional depth convolution Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS), 2018, 44(05):855-864. Tang Xianlun Du Yiming Liu Yuwei An image recognition method based on conditional depth convolution Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS) 2018 44(05): 855 864 Search in Google Scholar

Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232. Zhu J Y Park T Isola P Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision 2017 2223 2232 10.1109/ICCV.2017.244 Search in Google Scholar

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015. Radford A Metz L Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J] arXiv preprint arXiv:1511.06434 2015 Search in Google Scholar

Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014. Kingma D P Adam Ba J. A method for stochastic optimization[J] arXiv preprint arXiv:1412.6980 2014 Search in Google Scholar

Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training gans[C]//Advances in neural information processing systems. 2016: 2234-2242. Salimans T Goodfellow I Zaremba W Improved techniques for training gans[C]// Advances in neural information processing systems 2016 2234 2242 Search in Google Scholar

Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems. 2017: 5767-5777 Gulrajani I Ahmed F Arjovsky M Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems 2017 5767 5777 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Computer Sciences, other