Open Access

Long-Term Effect of Different Particle Size Distributions of Waste Glass Powder on the Mechanical Properties of Concrete


Cite

Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792 Schneider M. 2019 The cement industry on the way to a low-carbon future Cement and Concrete Research 124 105792 https://doi.org/10.1016/j.cemconres.2019.105792 10.1016/j.cemconres.2019.105792 Search in Google Scholar

Sonebi, M., Ammar, Y., & Diederich, P. (2016). Sustainability of cement, concrete and cement replacement materials in construction. Elsevier, In Sustainability of Construction Materials, 371–396. https://doi.org/10.1016/B978-0-08-100370-1.00015-9 Sonebi M. Ammar Y. Diederich P. 2016 Sustainability of cement, concrete and cement replacement materials in construction Elsevier In Sustainability of Construction Materials 371 396 https://doi.org/10.1016/B978-0-08-100370-1.00015-9 10.1016/B978-0-08-100370-1.00015-9 Search in Google Scholar

Federico, L. (2013). Waste glass – a supplementary cementitious material (Doctoral dissertation). McMaster University, Hamilton, Ontario, Canada. http://hdl.handle.net/11375/13455 Federico L. 2013 Waste glass – a supplementary cementitious material (Doctoral dissertation) McMaster University Hamilton, Ontario, Canada http://hdl.handle.net/11375/13455 Search in Google Scholar

Omran, A., & Tagnit-hamou, A. (2016). Performance of glass-powder concrete in field applications. Construction and Building Materials, 109, 84–95. https://doi.org/10.1016/j.conbuildmat.2016.02.006 Omran A. Tagnit-hamou A. 2016 Performance of glass-powder concrete in field applications Construction and Building Materials 109 84 95 https://doi.org/10.1016/j.conbuildmat.2016.02.006 10.1016/j.conbuildmat.2016.02.006 Search in Google Scholar

Islam, G. M. S., Rahman, M. H., & Kazi, N. (2017). Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6(1), 37–44. https://doi.org/10.1016/j.ijsbe.2016.10.005 Islam G. M. S. Rahman M. H. Kazi N. 2017 Waste glass powder as partial replacement of cement for sustainable concrete practice International Journal of Sustainable Built Environment 6 1 37 44 https://doi.org/10.1016/j.ijsbe.2016.10.005 10.1016/j.ijsbe.2016.10.005 Search in Google Scholar

Shao, Y., Lefort, T., Moras, S., & Rodriguez, D. (2000). Studies on concrete containing ground waste glass. Cement and Concrete Research, 30(1), 91–100. https://doi.org/10.1016/S0008-8846(99)00213-6 Shao Y. Lefort T. Moras S. Rodriguez D. 2000 Studies on concrete containing ground waste glass Cement and Concrete Research 30 1 91 100 https://doi.org/10.1016/S0008-8846(99)00213-6 10.1016/S0008-8846(99)00213-6 Search in Google Scholar

Idir, R., Cyr, M., & Tagnit-Hamou, A. (2010). Use of waste glass in cement-based materials. Déchets Sciences et Techniques, 9. https://doi.org/10.4267/dechets-sciences-techniques. 3132 Idir R. Cyr M. Tagnit-Hamou A. 2010 Use of waste glass in cement-based materials Déchets Sciences et Techniques 9 https://doi.org/10.4267/dechets-sciences-techniques 3132 10.4267/dechets-sciences-techniques.3132 Search in Google Scholar

Aladdine, F., Laldji, S., & Tagnit-Hamou, A. (2009). Glass powder as an alternative cementitious material in concrete. In 10th ACI Int. Conf. Recent Advances in Concrete Tech. and Sustainability Issues, Seville, Espagne, 683–698. Aladdine F. Laldji S. Tagnit-Hamou A. 2009 Glass powder as an alternative cementitious material in concrete. In 10th ACI Int. Conf. Recent Advances in Concrete Tech. and Sustainability Issues Seville, Espagne 683 698 Search in Google Scholar

Matos, A. M., & Sousa-Coutinho, J. (2012). Durability of mortar using waste glass powder as cement replacement. Construction and Building Materials, 36, 205–215. https://doi.org/10.1016/j.conbuildmat.2012.04.027 Matos A. M. Sousa-Coutinho J. 2012 Durability of mortar using waste glass powder as cement replacement Construction and Building Materials 36 205 215 https://doi.org/10.1016/j.conbuildmat.2012.04.027 10.1016/j.conbuildmat.2012.04.027 Search in Google Scholar

Dyer, T. D., & Dhir, R. K. (2001). Chemical reactions of glass cullet used as cement component. Journal of Materials in Civil Engineering, 13(6), 412–417. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(412) Dyer T. D. Dhir R. K. 2001 Chemical reactions of glass cullet used as cement component Journal of Materials in Civil Engineering 13 6 412 417 https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(412) 10.1061/(ASCE)0899-1561(2001)13:6(412) Search in Google Scholar

Kalakada, Z., & Doh, J. H. (2020). Studies on Recycled Waste Glass Powder as Binder in Concrete. In ACMSM25, 61–70. Springer. https://doi.org/10.1007/978-981-13-7603-0_7 Kalakada Z. Doh J. H. 2020 Studies on Recycled Waste Glass Powder as Binder in Concrete. In ACMSM25 61 70 Springer https://doi.org/10.1007/978-981-13-7603-0_7 10.1007/978-981-13-7603-0_7 Search in Google Scholar

Aliabdo, A. A., Abd Elmoaty, A. E. M., & Aboshama, A. Y. (2016). Utilization of waste glass powder in the production of cement and concrete. Construction and Building Materials, 124, 866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016 Aliabdo A. A. Abd Elmoaty A. E. M. Aboshama A. Y. 2016 Utilization of waste glass powder in the production of cement and concrete Construction and Building Materials 124 866 877 https://doi.org/10.1016/j.conbuildmat.2016.08.016 10.1016/j.conbuildmat.2016.08.016 Search in Google Scholar

Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221–229. Singapore: Springer Singapore. Naaamandadin N. A. Abdul Aziz I. S. Mustafa W. A. Santiagoo R. 2020 Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Jamaludin Z. Ali Mokhtar M. N. (Eds.), Intelligent Manufacturing and Mechatronics 221 229 Singapore Springer Singapore 10.1007/978-981-13-9539-0_23 Search in Google Scholar

Schwarz, N., Cam, H., & Neithalath, N. (2008). Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cement and Concrete Composites, 30, 486–496. https://doi.org/10.1016/j.cemconcomp.2008.02.001 Schwarz N. Cam H. Neithalath N. 2008 Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash Cement and Concrete Composites 30 486 496 https://doi.org/10.1016/j.cemconcomp.2008.02.001 10.1016/j.cemconcomp.2008.02.001 Search in Google Scholar

Omran, A., Harbec, D., Tagnit-Hamou, A., & Gagne, R. (2017). Production of roller-compacted concrete using glass powder: Field study. Construction and Building Materials, 133, 450–458. https://doi.org/10.1016/j.conbuildmat.2016.12.099 Omran A. Harbec D. Tagnit-Hamou A. Gagne R. 2017 Production of roller-compacted concrete using glass powder: Field study Construction and Building Materials 133 450 458 https://doi.org/10.1016/j.conbuildmat.2016.12.099 10.1016/j.conbuildmat.2016.12.099 Search in Google Scholar

Shayan, A., & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cement and Concrete Research, 36(3), 457–468. https://doi.org/10.1016/j.cemconres.2005.12.012 Shayan A. Xu A. 2006 Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs Cement and Concrete Research 36 3 457 468 https://doi.org/10.1016/j.cemconres.2005.12.012 10.1016/j.cemconres.2005.12.012 Search in Google Scholar

Karamberi, A., & Moutsatsou, A. (2005). Participation of coloured glass cullet in cementitious materials. Cement and Concrete Composites, 27(2), 319–327. https://doi.org/10.1016/j.cemconcomp.2004.02.021 Karamberi A. Moutsatsou A. 2005 Participation of coloured glass cullet in cementitious materials Cement and Concrete Composites 27 2 319 327 https://doi.org/10.1016/j.cemconcomp.2004.02.021 10.1016/j.cemconcomp.2004.02.021 Search in Google Scholar

Schwarz, N., & Neithalath, N. (2007). Quantifying the cementing efficiency of fine glass powder and its comparison to fly ash. In A. M. Amde, G. M. Sabnis, & J. S. Y. Tan (Eds.), Proceedings of the 1st International Conference on Recent Advances in Concrete Technology, RAC 2007, 735–746. DEStech Publications Inc. Schwarz N. Neithalath N. 2007 Quantifying the cementing efficiency of fine glass powder and its comparison to fly ash. In Amde A. M. Sabnis G. M. Tan J. S. Y. (Eds.), Proceedings of the 1st International Conference on Recent Advances in Concrete Technology, RAC 2007 735 746 DEStech Publications Inc Search in Google Scholar

Chen, C. H., Huang, R., Wu, J. K., & Yang, C. C. (2006). Waste E-glass particles used in cementitious mixtures. Cement and Concrete Research, 36(3), 449–456. https://doi.org/10.1016/j.cemconres.2005.12.010 Chen C. H. Huang R. Wu J. K. Yang C. C. 2006 Waste E-glass particles used in cementitious mixtures Cement and Concrete Research 36 3 449 456 https://doi.org/10.1016/j.cemconres.2005.12.010 10.1016/j.cemconres.2005.12.010 Search in Google Scholar

Khmiri, A., Chaabouni, M., & Samet, B. (2013). Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Construction and Building Materials, 44, 74–80. https://doi.org/10.1016/j.conbuildmat.2013.02.040 Khmiri A. Chaabouni M. Samet B. 2013 Chemical behaviour of ground waste glass when used as partial cement replacement in mortars Construction and Building Materials 44 74 80 https://doi.org/10.1016/j.conbuildmat.2013.02.040 10.1016/j.conbuildmat.2013.02.040 Search in Google Scholar

Zheng, K. (2016). Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction. Cement and Concrete Composites, 67, 30–38. https://doi.org/10.1016/j.cemconcomp.2015.12.008 Zheng K. 2016 Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction Cement and Concrete Composites 67 30 38 https://doi.org/10.1016/j.cemconcomp.2015.12.008 10.1016/j.cemconcomp.2015.12.008 Search in Google Scholar

Nassar, R.-U.-D., & Soroushian, P. (2012). Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368–377. https://doi.org/10.1016/j.conbuildmat.2011.10.061 Nassar R.-U.-D. Soroushian P. 2012 Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement Construction and Building Materials 29 368 377 https://doi.org/10.1016/j.conbuildmat.2011.10.061 10.1016/j.conbuildmat.2011.10.061 Search in Google Scholar

He, Z., Zhan, P., Du, S., Liu, B., & Yuan, W. (2019). Creep behavior of concrete containing glass powder. Composites Part B: Engineering, 166, 13–20. https://doi.org/10.1016/j.compositesb.2018.11.133 He Z. Zhan P. Du S. Liu B. Yuan W. 2019 Creep behavior of concrete containing glass powder Composites Part B: Engineering 166 13 20 https://doi.org/10.1016/j.compositesb.2018.11.133 10.1016/j.compositesb.2018.11.133 Search in Google Scholar

Jiang, Y., Ling, T.-C., Mo, K. H., & Shi, C. (2019). A critical review of waste glass powder--Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 242, 440–449. https://doi.org/10.1016/j.jenvman.2019.04.098 Jiang Y. Ling T.-C. Mo K. H. Shi C. 2019 A critical review of waste glass powder--Multiple roles of utilization in cement-based materials and construction products Journal of Environmental Management 242 440 449 https://doi.org/10.1016/j.jenvman.2019.04.098 10.1016/j.jenvman.2019.04.098 Search in Google Scholar

Kumarappan, N. (2013). Partial replacement cement in concrete using waste glass. International Journal of Engineering Research and Technology, 2(10), 1880–1883. Kumarappan N. 2013 Partial replacement cement in concrete using waste glass International Journal of Engineering Research and Technology 2 10 1880 1883 Search in Google Scholar

Khatib, J. M., Negim, E. M., Sohl, H. S., & Chileshe, N. (2012). Glass Powder Utilisation in Concrete Production. European Journal of Applied Sciences, 4(4), 173–176. DOI: 10.5829/idosi.ejas.2012.4.4.1102 Khatib J. M. Negim E. M. Sohl H. S. Chileshe N. 2012 Glass Powder Utilisation in Concrete Production European Journal of Applied Sciences 4 4 173 176 DOI:10.5829/idosi.ejas.2012.4.4.1102 Open DOISearch in Google Scholar

Vandhiyan, R., Ramkumar, K., & Ramya, R. (2013). Experimental study on replacement of cement by glass powder. Int. J. Eng. Res. Technol, 2(5), 234–238. Vandhiyan R. Ramkumar K. Ramya R. 2013 Experimental study on replacement of cement by glass powder Int. J. Eng. Res. Technol 2 5 234 238 Search in Google Scholar

Elaqra, H. A., Al-Afghany, M. J., Abo-Hasseira, A. B., Elmasry, I. H., Tabasi, A. M., & Alwan, M. D. (2019). Effect of immersion time of glass powder on mechanical properties of concrete contained glass powder as cement replacement. Construction and Building Materials, 206, 674–682. https://doi.org/10.1016/j.conbuildmat.2019.02.110 Elaqra H. A. Al-Afghany M. J. Abo-Hasseira A. B. Elmasry I. H. Tabasi A. M. Alwan M. D. 2019 Effect of immersion time of glass powder on mechanical properties of concrete contained glass powder as cement replacement Construction and Building Materials 206 674 682 https://doi.org/10.1016/j.conbuildmat.2019.02.110 10.1016/j.conbuildmat.2019.02.110 Search in Google Scholar

Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221–229. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-9539-0_23 Naaamandadin N. A. Abdul Aziz I. S. Mustafa W. A. Santiagoo R. 2020 Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Jamaludin Z. Ali Mokhtar M. N. (Eds.), Intelligent Manufacturing and Mechatronics 221 229 Singapore Springer Singapore https://doi.org/10.1007/978-981-13-9539-0_23 10.1007/978-981-13-9539-0_23 Search in Google Scholar

Omran, A. F., D.-Morin, E., Harbec, D., & Tagnit-Hamou, A. (2017). Long-term performance of glass-powder concrete in large-scale field applications. Construction and Building Materials, 135, 43–58. https://doi.org/10.1016/j.conbuildmat.2016.12.218 Omran A. F. D.-Morin E. Harbec D. Tagnit-Hamou A. 2017 Long-term performance of glass-powder concrete in large-scale field applications Construction and Building Materials 135 43 58 https://doi.org/10.1016/j.conbuildmat.2016.12.218 10.1016/j.conbuildmat.2016.12.218 Search in Google Scholar

Nassar, R. U. D., & Soroushian, P. (2011). Field investigation of concrete incorporating milled waste glass. The Journal of Solid Waste Technology and Management, 37(4), 307–319. https://doi.org/10.5276/JSWTM.2011.307 Nassar R. U. D. Soroushian P. 2011 Field investigation of concrete incorporating milled waste glass The Journal of Solid Waste Technology and Management 37 4 307 319 https://doi.org/10.5276/JSWTM.2011.307 10.5276/JSWTM.2011.307 Search in Google Scholar

ASTM C618-15, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0618-15 ASTM C618-15 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete ASTM International West Conshohocken, PA 2015 www.astm.org DOI:10.1520/C0618-15 Open DOISearch in Google Scholar

ASTM C136/C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0136_C0136M-14. ASTM C136/C136M-14 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates ASTM International West Conshohocken, PA 2014 www.astm.org DOI:10.1520/C0136_C0136M-14 Open DOISearch in Google Scholar

ASTM C33/C33M-13, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, 2013, www.astm.org. DOI: 10.1520/C0033_C0033M-13. ASTM C33/C33M-13 Standard Specification for Concrete Aggregates ASTM International West Conshohocken, PA 2013 www.astm.org DOI:10.1520/C0033_C0033M-13 Open DOISearch in Google Scholar

ASTM C192/C192M-15, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0192_C0192M-15. ASTM C192/C192M-15 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory ASTM International West Conshohocken, PA 2015 www.astm.org DOI:10.1520/C0192_C0192M-15 Open DOISearch in Google Scholar

ASTM C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0469_C0469M-14 ASTM C469/C469M-14 Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression ASTM International West Conshohocken, PA 2014 www.astm.org DOI:10.1520/C0469_C0469M-14 Open DOISearch in Google Scholar

ASTM C39/C39M-15a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0039_C0039M-15A ASTM C39/C39M-15a Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM International West Conshohocken, PA 2015 www.astm.org doi:10.1520/C0039_C0039M-15A Open DOISearch in Google Scholar

ASTM C496/C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004, www.astm.org. DOI:10.1520/C0496_C0496M-11 ASTM C496/C496M-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens ASTM International West Conshohocken, PA 2004 www.astm.org doi:10.1520/C0496_C0496M-11 Open DOISearch in Google Scholar

ASTM C78/C78M-15a, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0078_C0078M-15A ASTM C78/C78M-15a Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) ASTM International West Conshohocken, PA 2015 www.astm.org doi:10.1520/C0078_C0078M-15A Open DOISearch in Google Scholar

Noaman, A. T., Bakar, B. H. A., & Akil, H. M. (2016). Experimental investigation on compression toughness of rubberized steel fibre concrete. Construction and Building Materials, 115, 163–170. https://doi.org/10.1016/j.conbuildmat.2016.04.022 Noaman A. T. Bakar B. H. A. Akil H. M. 2016 Experimental investigation on compression toughness of rubberized steel fibre concrete Construction and Building Materials 115 163 170 https://doi.org/10.1016/j.conbuildmat.2016.04.022 10.1016/j.conbuildmat.2016.04.022 Search in Google Scholar

Poon, C. S., Shui, Z. H., & Lam, L. (2004). Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(12), 2215–2222. https://doi.org/10.1016/j.cemconres.2004.02.011 Poon C. S. Shui Z. H. Lam L. 2004 Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures Cement and Concrete Research 34 12 2215 2222 https://doi.org/10.1016/j.cemconres.2004.02.011 10.1016/j.cemconres.2004.02.011 Search in Google Scholar

Van Gysel, A., & Taerwe, L. (1996). Analytical formulation of the complete stress-strain curve for high strength concrete. Materials and Structures, 29(9), 529–533. https://doi.org/10.1007/BF02485952 Van Gysel A. Taerwe L. 1996 Analytical formulation of the complete stress-strain curve for high strength concrete Materials and Structures 29 9 529 533 https://doi.org/10.1007/BF02485952 10.1007/BF02485952 Search in Google Scholar

Omran, A., Soliman, N., Zidol, A., & Tagnit-Hamou, A. (2018). Performance of ground-glass pozzolan as a cementitious material – a review. Advances in Civil Engineering Materials, 7(1), 237–270. https://doi.org/10.1520/ACEM20170125 Omran A. Soliman N. Zidol A. Tagnit-Hamou A. 2018 Performance of ground-glass pozzolan as a cementitious material – a review Advances in Civil Engineering Materials 7 1 237 270 https://doi.org/10.1520/ACEM20170125 10.1520/ACEM20170125 Search in Google Scholar

Schwarz, N., DuBois, M., & Neithalath, N. (2007). Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes. Cement and Concrete Composites, 29(9), 656–666. https://doi.org/ https://doi.org/10.1016/j.cemconcomp. 2007.05.005 Schwarz N. DuBois M. Neithalath N. 2007 Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes Cement and Concrete Composites 29 9 656 666 https://doi.org/ https://doi.org/10.1016/j.cemconcomp 2007.05.00510.1016/j.cemconcomp.2007.05.005 Search in Google Scholar

Kamali, M., & Ghahremaninezhad, A. (2016). An investigation into the hydration and microstructure of cement pastes modified with glass powders. Construction and Building Materials, 112, 915–924. https://doi.org/10.1016/j.conbuildmat.2016.02.085 Kamali M. Ghahremaninezhad A. 2016 An investigation into the hydration and microstructure of cement pastes modified with glass powders Construction and Building Materials 112 915 924 https://doi.org/10.1016/j.conbuildmat.2016.02.085 10.1016/j.conbuildmat.2016.02.085 Search in Google Scholar

ASTM C143/C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0143_C0143M-15A ASTM C143/C143M-15a Standard Test Method for Slump of Hydraulic-Cement Concrete ASTM International West Conshohocken, PA 2015 www.astm.org DOI:10.1520/C0143_C0143M-15A Open DOISearch in Google Scholar

Omer, B., & Saeed, J. (2020). Characterizations and Modeling the Influence of Particle Size Distributions (PSD) of Glass Powder on the Mechanical Behavior of Normal Strength Concrete. Civil Engineering and Architecture, 8(5), 993–1005. DOI: 10.13189/cea.2020.080526 Omer B. Saeed J. 2020 Characterizations and Modeling the Influence of Particle Size Distributions (PSD) of Glass Powder on the Mechanical Behavior of Normal Strength Concrete Civil Engineering and Architecture 8 5 993 1005 DOI:10.13189/cea.2020.080526 Open DOISearch in Google Scholar

Shayan, A., & Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and Concrete Research, 34(1), 81–89. https://doi.org/10.1016/S0008-8846(03)00251-5 Shayan A. Xu A. 2004 Value-added utilisation of waste glass in concrete Cement and Concrete Research 34 1 81 89 https://doi.org/10.1016/S0008-8846(03)00251-5 10.2749/222137802796337099 Search in Google Scholar

Rashad, A. M. (2014). Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Construction and Building Materials, 72, 340–357. Rashad A. M. 2014 Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement Construction and Building Materials 72 340 357 10.1016/j.conbuildmat.2014.08.092 Search in Google Scholar

Johnston, C. (1974). Waste Glass as Coarse Aggregate for Concrete. Journal of Testing and Evaluation, 2(5), 344–350. Retrieved from https://doi.org/10.1520/JTE10117J Johnston C. 1974 Waste Glass as Coarse Aggregate for Concrete Journal of Testing and Evaluation 2 5 344 350 Retrieved from https://doi.org/10.1520/JTE10117J 10.1520/JTE10117J Search in Google Scholar

Kozlova, S., Millrath, K., Meyer, C., & Shimanovich, S. (2004). A suggested screening test for ASR in cement-bound composites containing glass aggregate based on autoclaving. Cement and Concrete Composites, 26(7), 827–835. https://doi.org/ https://doi.org/10.1016/j.cemconcomp. 2003.03.001 Kozlova S. Millrath K. Meyer C. Shimanovich S. 2004 A suggested screening test for ASR in cement-bound composites containing glass aggregate based on autoclaving Cement and Concrete Composites 26 7 827 835 https://doi.org/ https://doi.org/10.1016/j.cemconcomp 2003.03.00110.1016/j.cemconcomp.2003.03.001 Search in Google Scholar

Jin W. (1998). Alkali-silica reaction in concrete with glass aggregate. A Chemo physicmechanical Approach, PhD Dissertation, Columbia University, (1998). Jin W. 1998 Alkali-silica reaction in concrete with glass aggregate A Chemo physicmechanical Approach PhD Dissertation Columbia University 1998 Search in Google Scholar

Fernandes, I., & Broekmans, M. A. (2013). Alkali–silica reactions: an overview. Part I. Metallography, Microstructure, and Analysis, 2(4), 257–267. https://doi.org/10.1007/s13632-013-0085-5 Fernandes I. Broekmans M. A. 2013 Alkali–silica reactions: an overview. Part I Metallography, Microstructure, and Analysis 2 4 257 267 https://doi.org/10.1007/s13632-013-0085-5 10.1007/s13632-013-0085-5 Search in Google Scholar

Specification, Iraqi Standard, (1984). No. 5/1984, Portland Cement. Central Organization for Standardization & Quality Control (COSQC), Baghdad, Iraq, 1984. Specification, Iraqi Standard 1984 No. 5/1984, Portland Cement. Central Organization for Standardization & Quality Control (COSQC) Baghdad, Iraq 1984 Search in Google Scholar

eISSN:
1899-0142
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings