This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Grin, J., Rotmans, J., & Schot, J. (2010). Transitions to Sustainable Development. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change. doi:10.4324/9780203856598GrinJ.RotmansJ., & SchotJ. (2010). Transitions to Sustainable Development. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change. doi:10.4324/9780203856598Open DOISearch in Google Scholar
Zuo, J., & Zhao, Z. Y. (2014). Green building research-current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271–281. doi:10.1016/j.rser.2013.10.021ZuoJ., & ZhaoZ. Y. (2014). Green building research-current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271–281. doi:10.1016/j.rser.2013.10.021Open DOISearch in Google Scholar
Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials. doi:10.1016/j.conbuildmat.2014.07.003BeheraM.BhattacharyyaS. K.MinochaA. K.DeoliyaR., & MaitiS. (2014). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials. doi:10.1016/j.conbuildmat.2014.07.003Open DOISearch in Google Scholar
Węglorz, M. (2014). Selected Aspects of Sustainable Civil Engineering. Architecture Civil Engineering Environment, 7(1), 41–47.WęglorzM. (2014). Selected Aspects of Sustainable Civil Engineering. Architecture Civil Engineering Environment, 7(1), 41–47.Search in Google Scholar
Milošević, P. (2012). Sustainable Eco Planning Strategies in East Europe (Case Study of Belgrade). Architecture Civil Engineering Environment, 5(4), 29–42.MiloševićP. (2012). Sustainable Eco Planning Strategies in East Europe (Case Study of Belgrade). Architecture Civil Engineering Environment, 5(4), 29–42.Search in Google Scholar
Pawlikowska-Piechotka, A., & Piechotka, M. (2012). Urban Sustainable Development and Green Agenda Perspective (Case Study in Warsaw). Architecture Civil Engineering Environment, 5(4), 43–52.Pawlikowska-PiechotkaA., & PiechotkaM. (2012). Urban Sustainable Development and Green Agenda Perspective (Case Study in Warsaw). Architecture Civil Engineering Environment, 5(4), 43–52.Search in Google Scholar
Słyk, J. (2015). Methodology of Architectural Design And Rules of Cooperation in The Digital Enviroment. Augmented Space as a Field of Research and Alternative Environment for Architectural Creation. Architecture Civil Engineering Environment, 8(4), 11–18.SłykJ. (2015). Methodology of Architectural Design And Rules of Cooperation in The Digital Enviroment. Augmented Space as a Field of Research and Alternative Environment for Architectural Creation. Architecture Civil Engineering Environment, 8(4), 11–18.Search in Google Scholar
Witkowski, H. (2015). Sustainability of Self-Compacting Concrete. Architecture Civil Engineering Environment, 8(1), 83–88.WitkowskiH. (2015). Sustainability of Self-Compacting Concrete. Architecture Civil Engineering Environment, 8(1), 83–88.Search in Google Scholar
Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I., … Černý, R. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409–419. doi:10.1016/j.jclepro.2015.09.072PavlíkZ.FořtJ.ZáleskáM.PavlíkováM.TrníkA.MedvedI., … ČernýR. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409–419. doi:10.1016/j.jclepro.2015.09.072Open DOISearch in Google Scholar
Muhd Norhasri, M. S., Hamidah, M. S., Mohd Fadzil, A., & Megawati, O. (2016). Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC). Construction and Building Materials, 127, 167–175. doi:10.1016/j.conbuildmat.2016.09.127Muhd NorhasriM. S.HamidahM. S.Mohd FadzilA., & MegawatiO. (2016). Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC). Construction and Building Materials, 127, 167–175. doi:10.1016/j.conbuildmat.2016.09.127Open DOISearch in Google Scholar
Kubissa, W., Jaskulski, R., & Reiterman, P. (2017). Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. Journal of Renewable Materials, 5(1), 53–61. Doi:10.7569/JRM.2017.634103KubissaW.JaskulskiR., & ReitermanP. (2017). Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. Journal of Renewable Materials, 5(1), 53–61. Doi:10.7569/JRM.2017.634103Open DOISearch in Google Scholar
Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. Doi:10.1016/j.cemconres.2004.01.021GartnerE. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. Doi:10.1016/j.cemconres.2004.01.021Open DOISearch in Google Scholar
Müller, C. (2006). Environmental and technical aspects of the application of blended cements in concrete. Roads and Bridges – Drogi i Mosty, 5(3), 43–72.MüllerC. (2006). Environmental and technical aspects of the application of blended cements in concrete. Roads and Bridges – Drogi i Mosty, 5(3), 43–72.Search in Google Scholar
Dziuk, D., Giergiczny, Z., & Garbacik, A. (2013). Calcareous fly ash as a main constituent of common cements. Roads and Bridges – Drogi i Mosty, 12(1), 57–69.DziukD.GiergicznyZ., & GarbacikA. (2013). Calcareous fly ash as a main constituent of common cements. Roads and Bridges – Drogi i Mosty, 12(1), 57–69.Search in Google Scholar
Mokrzycki, E., & Uliasz- Bocheńczyk, A. (2003). Alternative fuels for the cement industry. Applied Energy, 74(1–2), 95–100. doi:10.1016/S0306-2619(02)00135-6MokrzyckiE., & Uliasz- BocheńczykA. (2003). Alternative fuels for the cement industry. Applied Energy, 74(1–2), 95–100. doi:10.1016/S0306-2619(02)00135-6Open DOISearch in Google Scholar
Li, F., & Zhang, W. (2011). Combustion of sewage sludge as alternative fuel for cement industry. Journal Wuhan University of Technology, Materials Science Edition, 26(3), 556–560. doi:10.1007/s11595-011-0267-4LiF., & ZhangW. (2011). Combustion of sewage sludge as alternative fuel for cement industry. Journal Wuhan University of Technology, Materials Science Edition, 26(3), 556–560. doi:10.1007/s11595-011-0267-4Open DOISearch in Google Scholar
Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2013). Impact of Alternative Fuels on the Cement Manufacturing Plant Performance: An Overview. Procedia Engineering, 56, 393–400. doi:10.1016/j.proeng.2013.03.138RahmanA.RasulM. G.KhanM. M. K., & SharmaS. (2013). Impact of Alternative Fuels on the Cement Manufacturing Plant Performance: An Overview. Procedia Engineering, 56, 393–400. doi:10.1016/j.proeng.2013.03.138Open DOISearch in Google Scholar
Dabrowska, M., & Giergiczny, Z. (2013). Chemical resistance of mortars made of cements with calcareous fly ash. Roads and Bridges – Drogi i Mosty, 12(2), 131–146. doi:10.7409/rabdim.013.010DabrowskaM., & GiergicznyZ. (2013). Chemical resistance of mortars made of cements with calcareous fly ash. Roads and Bridges – Drogi i Mosty, 12(2), 131–146. doi:10.7409/rabdim.013.010Open DOISearch in Google Scholar
Chandratilake, S. R., & Dias, W. P. S. (2013). Sustainability rating systems for buildings: Comparisons and correlations. Energy, 59, 22–28. doi:10.1016/j.energy.2013.07.026ChandratilakeS. R., & DiasW. P. S. (2013). Sustainability rating systems for buildings: Comparisons and correlations. Energy, 59, 22–28. doi:10.1016/j.energy.2013.07.026Open DOISearch in Google Scholar
Matarneh, R. T. (2017). Development of Sustainable Assessment Method and Design Tool for Existing and Traditional Buildings in Jordan. Architecture Civil Engineering Environment, 10(4), 15–31.MatarnehR. T. (2017). Development of Sustainable Assessment Method and Design Tool for Existing and Traditional Buildings in Jordan. Architecture Civil Engineering Environment, 10(4), 15–31.10.21307/acee-2017-048Search in Google Scholar
Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235–244. doi:10.1016/j.autcon.2009.10.004ChenY.OkudanG. E., & RileyD. R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235–244. doi:10.1016/j.autcon.2009.10.004Open DOISearch in Google Scholar
Chen, J. J., Fung, W. W. S., Ng, P. L., & Kwan, A. K. H. (2012). Adding fillers to reduce embodied carbon and embodied energy of concrete. In Twelfth International Conference on Recent Advances in Concrete Technology and Sustainability, Prague (pp. 91–107). Michigan: American Concrete Institute.ChenJ. J.FungW. W. S.NgP. L., & KwanA. K. H. (2012). Adding fillers to reduce embodied carbon and embodied energy of concrete. In Twelfth International Conference on Recent Advances in Concrete Technology and Sustainability, Prague (pp. 91–107). Michigan: American Concrete Institute.Search in Google Scholar
Zhang, Y. R., Liu, M. H., Xie, H. B., & Wang, Y. F. (2014). Assessment of CO2 emissions and cost in fly ash concrete. In Environment, Energy and Applied Technology: Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014), Taiwan (pp. 327–331). CRC Press.ZhangY. R.LiuM. H.XieH. B., & WangY. F. (2014). Assessment of CO2 emissions and cost in fly ash concrete. In Environment, Energy and Applied Technology: Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014), Taiwan (pp. 327–331). CRC Press.Search in Google Scholar
Teixeira, E. R., Mateus, R., Camõesa, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221–2230. doi:10.1016/j.jclepro.2015.09.124TeixeiraE. R.MateusR.CamõesaA. F.BragançaL., & BrancoF. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221–2230. doi:10.1016/j.jclepro.2015.09.124Open DOISearch in Google Scholar
Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38–48. doi:10.1016/j.cemconcomp.2014.03.005Petek GurselA.MasanetE.HorvathA., & StadelA. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38–48. doi:10.1016/j.cemconcomp.2014.03.005Open DOISearch in Google Scholar
Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244–248. doi:10.1016/j.rser.2015.01.043Abd RashidA. F., & YusoffS. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244–248. doi:10.1016/j.rser.2015.01.043Open DOISearch in Google Scholar
Lewandowska, A., Noskowiak, A., Pajchrowski, G., & Zarebska, J. (2015). Between full LCA and energy certification methodology - a comparison of six methodological variants of buildings environmental assessment. International Journal of Life Cycle Assessment, 20(1), 9–22. doi:10.1007/s11367-014-0805-3LewandowskaA.NoskowiakA.PajchrowskiG., & ZarebskaJ. (2015). Between full LCA and energy certification methodology - a comparison of six methodological variants of buildings environmental assessment. International Journal of Life Cycle Assessment, 20(1), 9–22. doi:10.1007/s11367-014-0805-3Open DOISearch in Google Scholar
Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. doi:10.1007/s11367-016-1045-5TaitM. W., & CheungW. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. doi:10.1007/s11367-016-1045-5Open DOISearch in Google Scholar
Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. doi:10.1016/j.jclepro.2012.08.001YangK. H.SongJ. K., & SongK. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. doi:10.1016/j.jclepro.2012.08.001Open DOISearch in Google Scholar
Yang, K. H., Jung, Y. B., Cho, M. S., & Tae, S. H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. doi:10.1016/j.jclepro.2014.03.018YangK. H.JungY. B.ChoM. S., & TaeS. H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. doi:10.1016/j.jclepro.2014.03.018Open DOISearch in Google Scholar
Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023TurnerL. K., & CollinsF. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023Open DOISearch in Google Scholar
Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. International Journal of Life Cycle Assessment, 15(6), 549–556. doi:10.1007/s11367-010-0191-4CollinsF. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. International Journal of Life Cycle Assessment, 15(6), 549–556. doi:10.1007/s11367-010-0191-4Open DOISearch in Google Scholar
Cassagnabère, F., Mouret, M., Escadeillas, G., Broilliard, P., & Bertrand, A. (2010). Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects. Construction and Building Materials, 24(7), 1109–1118. doi:10.1016/j.conbuildmat.2009.12.032CassagnabèreF.MouretM.EscadeillasG.BroilliardP., & BertrandA. (2010). Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects. Construction and Building Materials, 24(7), 1109–1118. doi:10.1016/j.conbuildmat.2009.12.032Open DOISearch in Google Scholar
Kubissa, W., Jaskulski, R., & Brodnan, M. (2016). Influence of SCM on the Permeability of Concrete with Recycled Aggregate. Periodica Polytechnica Civil Engineering, 60(4), 583–590. doi:http://dx.doi.org/10.3311/PPci.8614KubissaW.JaskulskiR., & BrodnanM. (2016). Influence of SCM on the Permeability of Concrete with Recycled Aggregate. Periodica Polytechnica Civil Engineering, 60(4), 583–590. doi:http://dx.doi.org/10.3311/PPci.861410.3311/PPci.8614Search in Google Scholar
Kubissa, W., Simon, T., Jaskulski, R., Reiterman, P., & Supera, M. (2017). Ecological High Performance Concrete. Procedia Engineering, 172, 595–603. doi:10.1016/j.proeng.2017.02.186KubissaW.SimonT.JaskulskiR.ReitermanP., & SuperaM. (2017). Ecological High Performance Concrete. Procedia Engineering, 172, 595–603. doi:10.1016/j.proeng.2017.02.186Open DOISearch in Google Scholar
Kubissa, W. (2016). Sorpcyjność betonu (Sorptivity of concrete). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.KubissaW. (2016). Sorpcyjność betonu (Sorptivity of concrete). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.Search in Google Scholar
Woodson, D. D. (2012). Concrete Portable Handbook (1st Edition). Butterworth-Heinemann. doi:10.1016/C2009-0-64403-2WoodsonD. D. (2012). Concrete Portable Handbook (1st Edition). Butterworth-Heinemann. doi:10.1016/C2009-0-64403-2Open DOISearch in Google Scholar
Kozioł, W., & Czaja, P. (2010). Rock Mining in Poland – Present Situation, Perspectives. Górnictwo i Geologia, 5(3), 41–58.KoziołW., & CzajaP. (2010). Rock Mining in Poland – Present Situation, Perspectives. Górnictwo i Geologia, 5(3), 41–58.Search in Google Scholar