Open Access

OPTIMIZATION OF WINDOW SIZE DESIGN FOR DETACHED HOUSE USING TRNSYS SIMULATIONS AND GENETIC ALGORITHM


Cite

Hasan, A., Vuolle, M., Siren, K. (2008). Minimisation of life cycle cost of a detached house using combined simulation and optimization. Building and Environment, 43, 2022–2034.10.1016/j.buildenv.2007.12.003 Search in Google Scholar

Ascione, F., Bellia, L., Capozzoli, A., Minichiello, F. (2009). Energy saving strategies in air-conditioning for museums. Applied Thermal Engineering, 29, 676–686.10.1016/j.applthermaleng.2008.03.040 Search in Google Scholar

Ferdyn-Grygierek, J., Baranowski, A. (2009). Energysaving solutions for the cooling of the office buildings. Rynek Energii, 1, 46–52. Search in Google Scholar

Baranowski, A., Ferdyn-Grygierek, J. (2011). Numerical analysis of the energy consumption in the office building. Rynek Energii, 2, 171–175. Search in Google Scholar

Ferdyn-Grygierek, J. (2014). Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy and Buildings, 85, 32–44.10.1016/j.enbuild.2014.09.014 Search in Google Scholar

Ferdyn-Grygierek, J., Baranowski, A. (2015). Internal environment in the museum building Assessment and improvement of air exchange and its impact on energy demand for heating. Energy and Buildings, 92, 45–54.10.1016/j.enbuild.2015.01.033 Search in Google Scholar

Ferdyn-Grygierek, J., Baranowski, A. (2016). Cooling demand in museum premises – numerical prediction and measurement validation. Architecture Civil Engineering Environment, 9(2), 125–135.10.21307/acee-2016-028 Search in Google Scholar

Znouda, E., Ghrab-Morcos, N., Hadj-Alouane, A. (2007). Optimization of Mediterranean building design using genetic algorithms. Energy and Buildings, 39, 148–153.10.1016/j.enbuild.2005.11.015 Search in Google Scholar

Goldberg, D. E. (1995). Algorytmy genetyczne i ich zastosowania (Genetic algorithms and their applications). Wydawnictwo Naukowo-Techniczne. Warszawa. Search in Google Scholar

Liu, Y., Dong, H., Lohse, N., Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259–272.10.1016/j.ijpe.2016.06.019 Search in Google Scholar

Yang, C., Li H., Rezgui, Y., Petri, I., Yuce, B., Chen, B., Jayan B. (2014). High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy and Buildings, 76, 92–101.10.1016/j.enbuild.2014.02.053 Search in Google Scholar

Lu, Y., Shengwei, W., Yang, Z., Chengchu, Y. (2015). Renewable energy system optimization of low/zero energy buildings using single-objective and multiobjective optimization methods. Energy and Buildings, 89, 61–75.10.1016/j.enbuild.2014.12.032 Search in Google Scholar

Čongradac, V., Kulić, F. (2012). Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation. Energy and Buildings, 47, 651–658.10.1016/j.enbuild.2012.01.007 Search in Google Scholar

Mossolly, M., Ghali, K., Ghaddar, N. (2009). Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy, 34, 58–66.10.1016/j.energy.2008.10.001 Search in Google Scholar

Bichiou, Y., Krarti, M. (2011). Optimization of envelope and HVAC systems selection for residential buildings. Energy and Buildings, 43(12), 3373–3382.10.1016/j.enbuild.2011.08.031 Search in Google Scholar

Tuhus-Dubrow, D., Krarti, M. (2010). Genetic-algorithm based approach to optimize building envelope design for residential buildings. Building and Environment, 45, 1574–1581.10.1016/j.buildenv.2010.01.005 Search in Google Scholar

Magnier, L., Haghighat, F. (2010). Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm and Artificial Neural Network. Building and Environment, 45, 739–746.10.1016/j.buildenv.2009.08.016 Search in Google Scholar

Król, M., Białecki, R. (2003). Optimization of a window frame by BEM and genetic algorithm. Int. J. Numer. Methods Heat Fluid Flow, 13(5/6), 565–580.10.1108/09615530310482454 Search in Google Scholar

Saari, A., Kalamees, T., Jokisalo, J., Michelsson, R., Alanne, K., Kurnitski, J. (2012). Financial viability of energy-efficiency measures in a new detached house design in Finland. Applied Energy, 92, 76–83.10.1016/j.apenergy.2011.10.029 Search in Google Scholar

Gasparella, A., Pernigotto, G., Cappelletti, F., Romagnoni, P., Baggio, P. (2011). Analysis and modelling of window and glazing systems energy performance for a well insulated residential building. Energy and Buildings, 43, 1030–1037.10.1016/j.enbuild.2010.12.032 Search in Google Scholar

Menzies, G.F., Wherrett, J.R. (2005). Windows in the workplace: examining issues of environmental sustainability and occupant comfort in the selection of multi-glazed windows. Energy and Buildings, 37(6), 623–630.10.1016/j.enbuild.2004.09.012 Search in Google Scholar

Ruiz, M.C., Romero, E. (2011). Energy saving in the conventional design of a Spanish house using thermal simulation. Energy and Buildings, 43, 3226–3235.10.1016/j.enbuild.2011.08.022 Search in Google Scholar

Filippin, C., Flores, Larsen, S., Lopez, Gay, E. (2008). Energy improvement of a conventional dwelling in Argentina through thermal simulation. Renewable Energy, 33, 2246–2257.10.1016/j.renene.2008.01.001 Search in Google Scholar

Cheung, C.K., Fuller, R.J., Luther, M.B. (2005). Energy-efficient envelope design for high-rise apartments. Energy and Buildings, 37, 37–48.10.1016/j.enbuild.2004.05.002 Search in Google Scholar

Yu, J., Yang, C., Tian, L. (2008). Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy and Buildings, 40, 1536–1546.10.1016/j.enbuild.2008.02.020 Search in Google Scholar

Kapsalaki, M., Leal, V., Santamouris, M. (2012). A methodology for economic efficient design of Net Zero Energy Buildings. Energy and Buildings, 55, 765–778.10.1016/j.enbuild.2012.10.022 Search in Google Scholar

Jaber, S., Ajib, S. (2011). Thermal and economic windows design for different climate zones. Energy and Buildings, 43, 3208–3215.10.1016/j.enbuild.2011.08.019 Search in Google Scholar

Stolarski, M. J., Krzyżaniak, M., Warmiński, K., Niksa, D. (2016). Energy consumption and costs of heating a detached house with wood briquettes in comparison to other fuels. Energy Conversion and Management, 121, 71–83.10.1016/j.enconman.2016.05.031 Search in Google Scholar

Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. 2002 nr 75 poz. 690 ze zm.). (Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions that should be met by buildings and their location (Journal of Laws of the Republic of Poland No 75, with recast)). Search in Google Scholar

Klein, S. A., Beckman, W. A., Mitchell, J. W., Duffie, J. A., Duffie, N. A., Freeman, T. L., Mitchell, J. C., et al. (2010). TRNSYS 17 A transient system simulation program. U. of W.-M. Solar Energy Laboratory, Ed. Search in Google Scholar

Grygierek, K. (2014). Samoadaptacyjna metoda algo- rytmów genetycznych w optymalizacji przestrzennych kratownic (Self-adaptive method of genetic algorithm in optimization of spatial truss structures). Modelowanie Inżynierskie, 21(52), 80–86. Search in Google Scholar

Grygierek, K. (2016). Optimization of trusses with self-adaptive approach in genetic algorithms. Architecture Civil Engineering Environment, 9(4), 67–78.10.21307/acee-2016-053 Search in Google Scholar

Ferdyn-Grygierek, J., Grygierek, K. (2017). Multivariable optimization of building thermal design using genetic algorithms. Energies, 10(10), 1570.10.3390/en10101570 Search in Google Scholar

Pełech, A. (2008). Wentylacja i klimatyzacja – pod- stawy. (Ventilation and air conditioning – fundamentals). Oficyna Politechniki Wrocławskiej. Wrocław. Search in Google Scholar

Recknagel, H., Schramek, E.-R. (2008). Kompendium wiedzy. Ogrzewnictwo, klimatyzacja, ciepła woda, chłodnictwo. (Handbook. Heating, air conditioning, domestic hot water, refrigerator technology) Omni Scala. Wrocław. Search in Google Scholar

EnergyPlus weather file website address; https://energyplus.net/weather-location/europewmoregion6/POL//POLKatowice.125600IMGW. Search in Google Scholar

ESRU Manual U02/1. (2002). The ESP-r system for building energy simulation. User Guide Version 10 Series. University of Strathclyde Energy Systems Research Unit. Glasgow. Search in Google Scholar

Baranowski, A., Ferdyn-Grygierek, J. (2009). Heat demand and air exchange in a multifamily building – simulation with elements of validation. Building Services Engineering Research & Technology, 30(3), 227–240.10.1177/0143624408338139 Search in Google Scholar

eISSN:
1899-0142
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings