Open Access

APPLICATION OF THE ANALYTIC HIERARCHY PROCESS (AHP) FOR ACOUSTIC ADAPTATION OF CLASSROOMS


Cite

Tanic, M., Stankovic, D., Kostic, I., Nikolic, V., Petrovic, M., Kondic, S. (2016). Pedagogical Implications of the Concepts of the Classroom in Europe: The Key Historical Layers, Tendencies and Influential Lines. Journal of Asian Architecture and Building Engineering, 15(1), 1–8.10.3130/jaabe.15.1 Search in Google Scholar

Ito, K., Murakami, S. (2010). Cost-effectiveness Analysis of Improved Indoor Temperature and Ventilation Conditions in School Buildings. Journal of Asian Architecture and Building Engineering, 9(2), 523–529.10.3130/jaabe.9.523 Search in Google Scholar

Kielb, C., Lin, S., Muscatiello, N., Hord, W., Rogers- Harrington, J., Healy, J. (2014). Building-related health symptoms and classroom indoor air quality: a survey of school teachers in New York State. Indoor Air, 25(4), 371–380.10.1111/ina.12154 Search in Google Scholar

Agarwal, N., Shiva Nagendra, S.M. (2016). Modelling of particulate matters distribution inside the multilevel urban classrooms in tropical climate for exposure assessment. Build. Environ., 102, 73–82.10.1016/j.buildenv.2016.03.015 Search in Google Scholar

Krüger, E.L., Zannin, P.H.T. (2004). Acoustic, thermal and luminous comfort in classrooms. Build. Environ., 39(9), 1055–1063.10.1016/j.buildenv.2004.01.030 Search in Google Scholar

Nowoświat, A., Olechowska, M. (2016). Investigation Studies on the Application of Reverberation Time. Arch. Acoust., 41(1), 15–26.10.1515/aoa-2016-0002 Search in Google Scholar

Houtgast, T., Steeneken, H.J.M. (1973). The Modulation Transfer Function in room acoustics as a predictor of speech intelligibility. Acoustica, 28, 66–73.10.1121/1.1913632 Search in Google Scholar

Olechowska, M., Ślusarek, J. (2016). Analysis of selected methods used for the reverberation time estimation. Architecture Civil Engineering Environment 9(4), 79–87.10.21307/acee-2016-054 Search in Google Scholar

Nowoświat, A., Olechowska, M. (2016). Fast estimation of speech transmission index using the reverberation time. Appl. Acoust., 102, 55–61.10.1016/j.apacoust.2015.09.001 Search in Google Scholar

Weinzierl, S., Vorländer, M. (2015). Room acoustical parameters as predictors of room acoustical impression: What do we know and what would we like to know? Acoust. Aust., 43(1), 41–48.10.1007/s40857-015-0007-6 Search in Google Scholar

Hodgson, M. (1999). Experimental investigation of the acoustical characteristics of University classrooms. J. Acoust. Soc. Am. 106(4), 1810–1819.10.1121/1.427931 Search in Google Scholar

Bistafa, S.R., Bradley, J.S. (2000). Predicting reverberation times in a simulated classroom. J. Acoust. Soc. Am., 108, 1721–1731.10.1121/1.1310191 Search in Google Scholar

Mikulski, W., Radosz, J. (2011). Acoustics of Classrooms in Primary Schools – Results of the Reverberation Time and Speech Transmission Index Assessments in Selected Buildings. Arch. Acoust., 36(4), 777–793.10.2478/v10168-011-0052-6 Search in Google Scholar

Nowoświat, A., Bochen, J., Dulak, L., Żuchowski, R. (2016). Investigation studies involving sound absorbing parameters of roadside screen panels subjected to aging in simulated conditions. Appl. Acoust. 111, 8–15.10.1016/j.apacoust.2016.04.001 Search in Google Scholar

Tomiku, R., Otsuru, T., Takahashi, Y. (2002). Finite Element Sound Field Analysis of Diffuseness in Reverberation Rooms. Journal of Asian Architecture and Building Engineering, 1(2), 33–39.10.3130/jaabe.1.2_33 Search in Google Scholar

Nowoświat, A., Olechowska, M., Ślusarek, J. (2016). Prediction of reverberation time using the residual minimization method. Appl. Acoust., 106, 42–50.10.1016/j.apacoust.2015.12.024 Search in Google Scholar

Cabrera, D., Xun, J., Guski, M. (2016). Calculating Reverberation Time from Impulse Responses: A Comparison of Software Implementations. Acoust. Aust., 44, 369–378.10.1007/s40857-016-0055-6 Search in Google Scholar

Rizzo, F., Zazzini, P. (2016). Improving the acoustical properties of an elliptical plan space with a cable net membrane roof. Acoust. Aust. 44(3), 449–456.10.1007/s40857-016-0072-5 Search in Google Scholar

Batubara, M., Tanimura, H., Asikhia, M.O., Toshimori, A. (2002). An Application of the AHP to Urban Residential Upgrading in Jakarta. Journal of Asian Architecture and Building Engineering, 1(1), 253–259.10.3130/jaabe.1.253 Search in Google Scholar

Liu, J., Yao, R., McCloy, R. (2012). A method to weight three categories of adaptive thermal comfort. Energy and Buildings, 47, 312–320.10.1016/j.enbuild.2011.12.007 Search in Google Scholar

Chung, H.J., Kim, S., Yang, J. (2017). Extraction and Analysis of Technical Management Factors for Passive Houses in Korea. Journal of Asian Architecture and Building Engineering, 16(1), 75–82.10.3130/jaabe.16.75 Search in Google Scholar

Madbouly, A.I., Noaman, A.Y., Ragab, A.H.M., Khedra, A.M., Fayoumi, A.G. (2016). Assessment model of classroom acoustics criteria for enhancing speech intelligibility and learning quality. Appl. Acoust., 114, 147–158.10.1016/j.apacoust.2016.07.018 Search in Google Scholar

ISO 3382-1:2009. Acoustics – Measurement of room acoustic parameters – Part 1: Performance spaces. Search in Google Scholar

ISO 3382-2:2008. Acoustics – Measurement of room acoustic parameters – Part 2: Reverberation time in ordinary rooms. Search in Google Scholar

Plomp, R., Steeneken, H.J.M., Hotgast, T. (1980). Predicting Speech Intelligibility in Rooms from the Modulation Transfer Function II. Mirror image computer model applied rectangular rooms. Acustica, 46, 74.Search in Google Scholar

Houtgast, T., Steeneken, H.J.M. (1984). A Multi – Language Evaluation of the RASTI – Method for Estimating Speech Intelligibility in Auditoria. Acustica, 54(4), 185–199. Search in Google Scholar

Houtgast, T., Steeneken, H.J.M. (1985). A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J. Acoust. Soc. Am., 77(3), 1069–1077.10.1121/1.392224 Search in Google Scholar

Passero, C.R.M., Zannin, P.H.T. (2010). Statistical comparison of reverberation times measured by the integrated impulse response and interrupted noise methods, computationally simulated with ODEON software, and calculated by Sabine, Eyring and Arau- Puchades’ formulas. Appl. Acoust., 71, 1204–1210.10.1016/j.apacoust.2010.07.003 Search in Google Scholar

Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Mathematical Psychology, 15(3), 234–281.10.1016/0022-2496(77)90033-5 Search in Google Scholar

Nowoświat, A., Leszczyńska, M. (2016). Application of hierarchical analysis method to design the structural partitions with different material and structural solutions for window glazing. Architecture Civil Engineering Environment, 9(3), 95–104.10.21307/acee-2016-038 Search in Google Scholar

PN-B-02151-4. Akustyka budowlana. Ochrona przed hałasem w budynkach. Cześć 4. Wymagania dotyczące warunków pogłosowych i zrozumiałości mowy w pomieszczeniach. (ang. Building acoustics. Protection against noise in buildings. Part 4. Requirements for reverberation and speech intelligibility in rooms). Search in Google Scholar

Nowoświat A., Olechowska M. (2017). Estimation of reverberation time in classrooms, using the Residual Minimization Method. Arch. Acoust., 42(4), 609–617.10.1515/aoa-2017-0065 Search in Google Scholar

eISSN:
1899-0142
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings