Cite

Basu P. (2010). Biomass gasification and pyrolysis. Practical design and theory. Amsterdam: Elsevier Inc. Search in Google Scholar

Uchman W., & Werle S. (2016). The use of low- calorific value gases in environmental protection engineering. Architecture Civil Engineering and Environment, 1(9), 127–132.10.21307/acee-2016-014 Search in Google Scholar

Kalisz S., Pronobis M., & Baxter D. (2008). Co-firing of biomass waste-derived syngas in coal power boiler. Energy, 33, 1770–1778.10.1016/j.energy.2008.08.001 Search in Google Scholar

Wilk M., Magdziarz A., Zajemska M. & Kuźnia M. (2014). Syngas as a reburning fuel for natural gas combustion. Chemical and Process Engineering, 35(2), 181–190.10.2478/cpe-2014-0014 Search in Google Scholar

Uchman W., Job M., & Skorek-Osikowska A. (2016). The use of high moisture sewage sludge in the CHP unit integrated with biomass drying and gasification. Architecture, Civil Engineering and Environment, 3, 147–152.10.21307/acee-2016-045 Search in Google Scholar

Kotowicz J., Sobolewski A., & Iluk T. (2013). Energetic analysis of a system integrated with biomass gasification. Energy, 52, 265–278.10.1016/j.energy.2013.02.048 Search in Google Scholar

Skorek-Osikowska A., Bartela Ł., Kotowicz J., Sobolewski A., Iluk T., & Remiorz L. (2014). The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation. Energy, 67, 328–340.10.1016/j.energy.2014.01.015 Search in Google Scholar

Werle S., Bisorca D., Katelbach-Woźniak A., Pogrzeba M., Krzyżak J., Ratman-Kłosińska I. & Burnete D. (2017). Phytoremediation as an effective method to remove heavy metals from contaminated area - TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops. Journal of the Energy Institute, 90, 408–417.10.1016/j.joei.2016.04.002 Search in Google Scholar

Pogrzeba M., Rusinowski S., Sitko K., Krzyżak J., Skalska A., Małkowski E., Ciszek D., Werle S., McCalmont J.P., Mos M., & Kalaji H.M. (2017). Relationship between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs microbial inoculation. Environmental Pollution, 225, 163–174.10.1016/j.envpol.2017.03.058 Search in Google Scholar

Szczukowski S., Tworkowski J., Stolarski M., Kwiatkowski J., Krzyżaniak M., Lajszner W. & Graban Ł. (2012). Wieloletnie rośliny energetyczne (Perennial energy crops). Warszawa: Multico Oficyna Wydawnicza. Search in Google Scholar

Xue G., Kwapinska M., Kwapinski W., Czajka K.M., Kennedy J., & Leahy J.J. (2014). Impact of torrefac- tion on properties of Miscanthus x giganteus relevant to gasification. Fuel, 121, 189–197.10.1016/j.fuel.2013.12.022 Search in Google Scholar

Ge X., Xu F., Vasco-Correa J., & Li Y. (2016). Giant reed: A competitive energy crop in comparison with miscanthus. Renewable and Sustainable Energy Reviews, 54, 350–362. Search in Google Scholar

Michel R., Rapagna S., Burg P., Mazziotti di Celso G., Courson C., Zimny T., & Gruber R. (2011). Steam gasification of Miscanthus x Giganteus with olivine as catalyst production of syngas and analysys of tars (IR, NMR and GC/MS). Biomass and Bioenergy, 35, 2650–2658.10.1016/j.biombioe.2011.02.054 Search in Google Scholar

Michel R., Rapagna S., Di Marcello, M., Burg P., Matt M., Courson C. & Gruber R. (2011). Catalytic stean gasification of Miscanthus x Giganteus in fluidised bed reactor on olivine based catalyst. Fuel Processing Technology, 92, 1169–1177.10.1016/j.fuproc.2010.12.005 Search in Google Scholar

Sattar A., Leeke G.A., Hornung A., & Wood J. (2014). Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass and Bioenergy, 69 , 276–286.10.1016/j.biombioe.2014.07.025 Search in Google Scholar

Howaniec N., & Smoliński A. (2011). Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas. International Journal of Hydrogen Energy, 36, 2038–2043.10.1016/j.ijhydene.2010.11.049Search in Google Scholar

Smoliński A., Stańczyk K., & Howaniec N. (2010). Steam gasification of selected energy crops in a fixed bed reactor. Renewable Energy, 35, 397–404.10.1016/j.renene.2009.06.005 Search in Google Scholar

Jayaraman K., & Gokalp I. (2015). Pyrolysis, combustion and gasification of Miscanthus and sewage sludge. Energy Conversion and Management, 89, 83–91.10.1016/j.enconman.2014.09.058 Search in Google Scholar

Nguyen T.L.T., & Hermansen J.E. (2015). Life cycle environmental performance of Miscanthus gasification versus other technologies for electricity production. Sustainable Energy Technologies and Assessments, 9, 81–94.10.1016/j.seta.2014.12.005 Search in Google Scholar

Wilk M., & Magdziarz A. (2017). Hydrothermal carbonization, torrefaction and slow pyrolysis of mis- canthus giganteus. Energy, in press, DOI: 10.1016/j.energy.2017.03.031.10.1016/j.energy.2017.03.031 Search in Google Scholar

Rao A.D., & Francuz D.J. (2013). An evaluation of advanced combined cycles. Applied Energy, 102, 1178–1186.10.1016/j.apenergy.2012.06.035 Search in Google Scholar

Magdziarz A., Wilk M., Gajek M., Nowak-Woźny D., Kopia A., Kalemba-Rec I., & Koziński J.A. (2016). Properties of ash generated during sewage sludge combustion: A multifaceted analysis. Energy, 113, 85–94.10.1016/j.energy.2016.07.029 Search in Google Scholar

Uchman W., Werle S., & Skorek-Osikowska A. (2016). Pozyskiwanie paliwa gazowego z roślin ener- getycznych (Gaseous fuel production from energy crops). Materiały VI Konferencji Naukowo- Technicznej Energetyka Gazowa 2016, 1, 171–188. Search in Google Scholar

Aspen Plus. Retrieved from http://www.aspentech.com/products/engineering/aspen-plus/Search in Google Scholar

eISSN:
1899-0142
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings