Open Access

Structural Behavior Of Normal And High-Strength Concrete Walls Reinforced With Glass Fiber-Reinforced Polymer Bars Under Eccentric Load


Cite

The solution of using glass fiber reinforced polymer (GFRP) bars, as reinforcement in concrete structures to overcome the problems created by steel corrosion, is now widely accepted because of both its non-corrosive nature and good results shown by large investigation efforts. In this paper twenty tests had been conducted on reinforced concrete wall specimens of (800 mm height x 450 mm width x 50 or 70 mm thickness effective dimensions). Four specimens were reinforced with steel bars to be considered as References, while the others were reinforced with GFRP bars. The specimens were made using normal and high strength concrete. All specimens showed similarity in the structural behavior and load pattern, the results show that Steel reinforced walls have 28% higher ultimate load than corresponding GFRP reinforced walls, also an approximate linear increase in the failure load with increasing in flexural GFRP reinforcement in range from 40.4% to 98.8% for NSC walls and in range of 70% to 115.1% for HSC walls. The ductility of the specimen reinforced with GFRP bars is 46% higher than that of steel reinforced specimens.

eISSN:
1899-0142
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings