Open Access

Coronaviruses – How Protein Interactions Changed Our Perception Of The World


Cite

Belouzard S., Chu V.C., Whittaker G.R.: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA, 106, 5871–5876 (2009)BelouzardS.ChuV.C.WhittakerG.R.Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sitesProc. Natl. Acad. Sci. USA10658715876200910.1073/pnas.0809524106Search in Google Scholar

Beniac D.R., Andonov A., Grudeski E., Booth T.F.: Architecture of the SARS coronavirus prefusion spike. Nat. Struct. Mol. Biol. 13, 751‐752 (2006)BeniacD.R.AndonovA.GrudeskiE.BoothT.F.Architecture of the SARS coronavirus prefusion spikeNat. Struct. Mol. Biol.13751752200610.1038/nsmb1123Search in Google Scholar

Bernstein K.E., Khan Z., Giani J.F., Cao D.Y., Bernstein E.A., Shen X.Z.: Angiotensin-converting enzyme in innate and adaptive immunity. Nat. Rev. Nephrol. 14, 325–336 (2018)BernsteinK.E.KhanZ.GianiJ.F.CaoD.Y.BernsteinE.A.ShenX.Z.Angiotensin-converting enzyme in innate and adaptive immunityNat. Rev. Nephrol.14325336201810.1038/nrneph.2018.15Search in Google Scholar

Boonacker E., Van Noorden C.J.: The multifunctional or moonlighting protein CD26/DPPIV. Eur. J. Cell Biol. 82, 53–73 (2003)BoonackerE.Van NoordenC.J.The multifunctional or moonlighting protein CD26/DPPIVEur. J. Cell Biol.825373200310.1078/0171-9335-00302Search in Google Scholar

Burkard C., Verheije M.H., Wicht O., van Kasteren S.I., van Kuppeveld F.J., Haagmans B.L., Pelkmans L., Rottier P.J., Bosch B.J., de Haan C.A.: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog. 10, e1004502(2014)BurkardC.VerheijeM.H.WichtO.van KasterenS.I.van KuppeveldF.J.HaagmansB.L.PelkmansL.RottierP.J.BoschB.J.de HaanC.A.Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent mannerPLoS Pathog.10e1004502201410.1371/journal.ppat.1004502Search in Google Scholar

Cai G., Bossé Y., Xiao F., Kheradmand F., Amos CI.: Tobacco Smoking Increases the Lung Gene Expression of ACE2, the Receptor of SARS-CoV-2. Am. J. Respir. Crit. Care. Med. 201, 1557–1559 (2020)CaiG.BosséY.XiaoF.KheradmandF.AmosCI.Tobacco Smoking Increases the Lung Gene Expression of ACE2, the Receptor of SARS-CoV-2Am. J. Respir. Crit. Care. Med.20115571559202010.1164/rccm.202003-0693LESearch in Google Scholar

Cai G.: Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. medRxiv, DOI: 10.1101/2020.02.05.20020107 (2020)CaiG.Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCovmedRxiv, DOI: 10.1101/2020.02.05.200201072020Open DOISearch in Google Scholar

Cao X.: COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 20, 269–270 (2020)CaoX.COVID-19: immunopathology and its implications for therapyNat. Rev. Immunol.20269270202010.1038/s41577-020-0308-3Search in Google Scholar

Channappanavar R., Fehr A.R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack M., Sompallae R., McCray P.B. Jr, Meyerholz D.K., Perlman S.: IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest. 129, 3625–3639 (2019)ChannappanavarR.FehrA.R.ZhengJ.Wohlford-LenaneC.AbrahanteJ.E.MackM.SompallaeR.McCrayP.B.JrMeyerholzD.K.PerlmanS.IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomesJ. Clin. Invest.12936253639201910.1172/JCI126363Search in Google Scholar

Chen N., Zhang L. i wsp.: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395, 507–513 (2020)ChenN.ZhangL.Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive studyLancet395507513202010.1016/S0140-6736(20)30211-7Search in Google Scholar

Chen Y., Liu Q., Guo D.: Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 92, 418–423 (2020)ChenY.LiuQ.GuoD.Emerging coronaviruses: Genome structure, replication, and pathogenesisJ. Med. Virol.92418423202010.1002/jmv.25681Search in Google Scholar

Cheng J., Zhao Y., Xu G., Zhang K., Jia W., Sun Y., Zhao J., Xue J., Hu Y., Zhang G.: The S2 Subunit of QX-type Infectious Bronchitis Coronavirus Spike Protein Is an Essential Determinant of Neurotropism. Viruses, 11, 972 (2019)ChengJ.ZhaoY.XuG.ZhangK.JiaW.SunY.ZhaoJ.XueJ.HuY.ZhangG.The S2 Subunit of QX-type Infectious Bronchitis Coronavirus Spike Protein Is an Essential Determinant of NeurotropismViruses11972201910.3390/v11100972Search in Google Scholar

Cheng Z., Yuen K.Y. i wsp.: Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza. J. Infect. Dis. 212, 1214–1221 (2015)ChengZ.YuenK.Y.Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenzaJ. Infect. Dis.21212141221201510.1093/infdis/jiv246Search in Google Scholar

Chiu R.W., Lo Y.M. i wsp.: ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome. Clin. Chem. 50, 1683–1686 (2004)ChiuR.W.LoY.M.ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndromeClin. Chem.5016831686200410.1373/clinchem.2004.035436Search in Google Scholar

Chu H., Yuen K.Y. i wsp.: Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19. Clin. Infect. Dis. 71, 1400–1409 (2020)ChuH.YuenK.Y.Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19Clin. Infect. Dis.7114001409202010.1093/cid/ciaa410Search in Google Scholar

Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E.: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742 (2020)CoutardB.ValleC.de LamballerieX.CanardB.SeidahN.G.DecrolyE.The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same cladeAntiviral Res.176104742202010.1016/j.antiviral.2020.104742Search in Google Scholar

Davanzo G.G., Farias A.S. i wsp.: SARS-CoV-2 Uses CD4 to Infect T Helper Lymphocytes. medRxiv, DOI: 10.1101/2020.09.25.20200329 (2020)DavanzoG.G.FariasA.S.SARS-CoV-2 Uses CD4 to Infect T Helper LymphocytesmedRxiv, DOI: 10.1101/2020.09.25.202003292020Open DOISearch in Google Scholar

de Candia P., Prattichizzo F., Garavelli S., Matarese G.: T Cells: Warriors of SARS-CoV-2 Infection. Trends Immunol. 42, 18–30 (2021)de CandiaP.PrattichizzoF.GaravelliS.MatareseG.T Cells: Warriors of SARS-CoV-2 InfectionTrends Immunol.421830202110.1016/j.it.2020.11.002Search in Google Scholar

de Haan C.A., Rottier P.J.: Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–230 (2005)de HaanC.A.RottierP.J.Molecular interactions in the assembly of coronavirusesAdv. Virus Res.64165230200510.1016/S0065-3527(05)64006-7Search in Google Scholar

de Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J.: Host Factors in Coronavirus Replication. Curr. Top. Microbiol. Immunol. 419, 1–42 (2018)de WildeA.H.SnijderE.J.KikkertM.van HemertM.J.Host Factors in Coronavirus ReplicationCurr. Top. Microbiol. Immunol.419142201810.1007/82_2017_25711998028643204Search in Google Scholar

Diao B., Chen Y. i wsp.: Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020)DiaoB.ChenY.Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19)Front. Immunol.11827202010.3389/fimmu.2020.00827720590332425950Search in Google Scholar

Du L., Zhou Y. i wsp.: A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J. Virol. 88, 704570–704553 (2014)DuL.ZhouY.A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike proteinJ. Virol.88704570704553201410.1128/JVI.00433-14405435524719424Search in Google Scholar

Duan K., Yang X. i wsp.: Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA, 117, 9490–9496 (2020)DuanK.YangX.Effectiveness of convalescent plasma therapy in severe COVID-19 patientsProc. Natl. Acad. Sci. USA11794909496202010.1073/pnas.2004168117719683732253318Search in Google Scholar

Fehr A.R., Perlman S.: Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23 (2015)FehrA.R.PerlmanS.Coronaviruses: an overview of their replication and pathogenesisMethods Mol. Biol.1282123201510.1007/978-1-4939-2438-7_1436938525720466Search in Google Scholar

Feng Z., Chen Y. i wsp.: The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes. medRxiv, DOI: 10.1101/2020.03.27.20045427 (2020)FengZ.ChenY.The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph NodesmedRxiv, DOI: 10.1101/2020.03.27.200454272020Open DOISearch in Google Scholar

Forni D., Cagliani R., Clerici M.: Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol. 25, 35–48 (2017)ForniD.CaglianiR.ClericiM.Molecular Evolution of Human Coronavirus GenomesTrends Microbiol.253548201710.1016/j.tim.2016.09.001711121827743750Search in Google Scholar

Fu J., Zhou B., Zhang L., Balaji K.S., Wei C., Liu X., Chen H., Peng J., Fu J.: Expressions and significances of the angiotensin--converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol. Biol. Rep. 47, 4383–4392 (2020)FuJ.ZhouB.ZhangL.BalajiK.S.WeiC.LiuX.ChenH.PengJ.FuJ.Expressions and significances of the angiotensin--converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19Mol. Biol. Rep.4743834392202010.1007/s11033-020-05478-4722435132410141Search in Google Scholar

Galloway S.E., Dugan V.G. i wsp.: Emergence of SARS-CoV-2 B.1.1.7 Lineage – United States, December 29, 2020-January 12, 2021. MMWR Morb. Mortal. Wkly. Rep. 70, 95–99 (2021)GallowayS.E.DuganV.G.Emergence of SARS-CoV-2 B.1.1.7 Lineage – United States, December 29, 2020-January 12, 2021MMWR Morb. Mortal. Wkly. Rep.709599202110.15585/mmwr.mm7003e2782177233476315Search in Google Scholar

Gao Q., Qin C. i wsp.: Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 369, 77–81 (2020)GaoQ.QinC.Development of an inactivated vaccine candidate for SARS-CoV-2Science3697781202010.1126/science.abc1932720268632376603Search in Google Scholar

Giamarellos-Bourboulis E.J., Koutsoukou A. i wsp.: Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe, 27, 992–1000 (2020)Giamarellos-BourboulisE.J.KoutsoukouA.Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory FailureCell Host Microbe279921000202010.1016/j.chom.2020.04.009717284132320677Search in Google Scholar

Glowacka I., Pöhlmann S. i wsp.: Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J. Virol. 84, 1198–1205 (2010)GlowackaI.PöhlmannS.Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63J. Virol.8411981205201010.1128/JVI.01248-09Search in Google Scholar

Glowacka I., Pöhlmann S. i wsp.: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85, 4122–4134 (2011)GlowackaI.PöhlmannS.Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune responseJ. Virol.8541224134201110.1128/JVI.02232-10Search in Google Scholar

Gorbalenya A.E., Enjuanes L., Ziebuhr J., Snijder EJ.: Nidovirales: evolving the largest RNA virus genome. Virus Res. 117, 17–37 (2006)GorbalenyaA.E.EnjuanesL.ZiebuhrJ.SnijderEJ.Nidovirales: evolving the largest RNA virus genomeVirus Res.1171737200610.1016/j.virusres.2006.01.017Search in Google Scholar

Gralinski L.E., Menachery V.D.: Return of the Coronavirus: 2019-nCoV. Viruses, 12, 135 (2020)GralinskiL.E.MenacheryV.D.Return of the Coronavirus: 2019-nCoVViruses12135202010.3390/v12020135Search in Google Scholar

Guan W.J., Zhong N.S. i wsp.: China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020)GuanW.J.ZhongN.S.China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in ChinaN. Engl. J. Med.38217081720202010.1056/NEJMoa2002032Search in Google Scholar

Heald-Sargent T., Gallagher T.: Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 4, 557–580 (2012)Heald-SargentT.GallagherT.Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competenceViruses4557580201210.3390/v4040557Search in Google Scholar

Hindson J.: COVID-19: faecal-oral transmission? Nat. Rev. Gastroenterol. Hepatol. 17, 259 (2020)HindsonJ.COVID-19: faecal-oral transmission?Nat. Rev. Gastroenterol. Hepatol.17259202010.1038/s41575-020-0295-7Search in Google Scholar

Hoffmann M., Hofmann-Winkler H., Pöhlmann S.: Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins (w) Activation of Viruses by Host Proteases, red. Böttcher-Friebertshäuser E., Garten W., Klenk H.D, Springer International Publishing AG, part of Springer Nature, 2018, s. 71–98HoffmannM.Hofmann-WinklerH.PöhlmannS.Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins (w) Activation of Viruses by Host Proteases, redBöttcher-FriebertshäuserE.GartenW.KlenkH.DSpringer International Publishing AG, part of Springer Nature2018, s. 719810.1007/978-3-319-75474-1_4Search in Google Scholar

Hoffmann M., Pöhlmann S. i wsp.: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271–280 (2020)HoffmannM.PöhlmannS.SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease InhibitorCell181271280202010.1016/j.cell.2020.02.052Search in Google Scholar

Huang C., Cao B. i wsp.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497–506 (2020)HuangC.CaoB.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet395497506202010.1016/S0140-6736(20)30183-5Search in Google Scholar

Huang I.C., Farzan M. i wsp.: Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 7, e1001258 (2011)HuangI.C.FarzanM.Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virusPLoS Pathog.7e1001258201110.1371/journal.ppat.1001258301712121253575Search in Google Scholar

Hulswit R.J.G., de Haan C.A.M., Bosch B.-J.: Coronavirus Spike Protein and Tropism Changes. Adv. Virus Res. 96, 29–57 (2016)HulswitR.J.G.de HaanC.A.M.BoschB.-J.Coronavirus Spike Protein and Tropism ChangesAdv. Virus Res.962957201610.1016/bs.aivir.2016.08.004711227727712627Search in Google Scholar

Hussain M., Jabeen N., Raza F., Shabbir S., Baig A.A., Amanullah A., Aziz B.: Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J. Med. Virol. 92, 1580–1586 (2020)HussainM.JabeenN.RazaF.ShabbirS.BaigA.A.AmanullahA.AzizB.Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike proteinJ. Med. Virol.9215801586202010.1002/jmv.25832722837232249956Search in Google Scholar

Imai Y., Kuba K., Ohto-Nakanishi T., Penninger JM.: Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ. J. 74, 405–410 (2010)ImaiY.KubaK.Ohto-NakanishiT.PenningerJM.Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesisCirc. J.74405410201010.1253/circj.CJ-10-004520134095Search in Google Scholar

Imai Y., Penninger J.M. i wsp.: Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436, 112–116 (2005)ImaiY.PenningerJ.M.Angiotensin-converting enzyme 2 protects from severe acute lung failureNature436112116200510.1038/nature03712709499816001071Search in Google Scholar

International Committee on Taxonomy of Viruses. https://talk.ictvonline.orgxs (17.02.2021)International Committee on Taxonomy of Viruseshttps://talk.ictvonline.orgxs (17.02.2021)Search in Google Scholar

Israelow B., Iwasaki A. i wsp.: Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 217, e20201241 (2020)IsraelowB.IwasakiA.Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signalingJ. Exp. Med.217e20201241202010.1084/jem.20201241740102532750141Search in Google Scholar

Itoyama S., Sasazuki T. i wsp.: Identification of an alternative 5’-untranslated exon and new polymorphisms of angiotensin--converting enzyme 2 gene: lack of association with SARS in the Vietnamese population. Am. J. Med. Genet. A, 136, 52–57 (2005)ItoyamaS.SasazukiT.Identification of an alternative 5’-untranslated exon and new polymorphisms of angiotensin--converting enzyme 2 gene: lack of association with SARS in the Vietnamese populationAm. J. Med. Genet. A1365257200510.1002/ajmg.a.30779713809715937940Search in Google Scholar

Karczewski K.J., MacArthur D.G. i wsp.: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581, 434–443 (2020)KarczewskiK.J.MacArthurD.G.The mutational constraint spectrum quantified from variation in 141,456 humansNature581434443202010.1038/s41586-020-2308-7733419732461654Search in Google Scholar

Kaur S.P., Gupta V.: COVID-19 Vaccine: A comprehensive status report. Virus Res. 288, 198114 (2020)KaurS.P.GuptaV.COVID-19 Vaccine: A comprehensive status reportVirus Res.288198114202010.1016/j.virusres.2020.198114742351032800805Search in Google Scholar

Khalaf K., Papp N., Chou J.T., Hana D., Mackiewicz A., Kaczmarek M.: SARS-CoV-2: Pathogenesis, and Advancements in Diagnostics and Treatment. Front. Immunol. 11, 570927 (2020)KhalafK.PappN.ChouJ.T.HanaD.MackiewiczA.KaczmarekM.SARS-CoV-2: Pathogenesis, and Advancements in Diagnostics and TreatmentFront. Immunol.11570927202010.3389/fimmu.2020.570927757310133123144Search in Google Scholar

Kleine-Weber H., Schroeder S., Krüger N., Prokscha A., Naim H.Y., Müller M.A., Drosten C., Pöhlmann S., Hoffmann M.: Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 9, 155–168 (2020)Kleine-WeberH.SchroederS.KrügerN.ProkschaA.NaimH.Y.MüllerM.A.DrostenC.PöhlmannS.HoffmannM.Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirusEmerg. Microbes Infect.9155168202010.1080/22221751.2020.1713705700667531964246Search in Google Scholar

Korber B., Montefiori D.C. i wsp.: Tracking Changes in SARS--CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 182, 812–827 (2020)KorberB.MontefioriD.C.Tracking Changes in SARS--CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 VirusCell182812827202010.1016/j.cell.2020.06.043733243932697968Search in Google Scholar

Krammer F.: SARS-CoV-2 vaccines in development. Nature, 586, 516–527 (2020)KrammerF.SARS-CoV-2 vaccines in developmentNature586516527202010.1038/s41586-020-2798-332967006Search in Google Scholar

Kuba K., Imai Y., Ohto-Nakanishi T., Penninger J.M.: Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther. 128, 119–128 (2010)KubaK.ImaiY.Ohto-NakanishiT.PenningerJ.M.Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transportersPharmacol. Ther.128119128201010.1016/j.pharmthera.2010.06.003711267820599443Search in Google Scholar

Kuba K., Penninger J.M. i wsp.: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11, 875–879 (2005)KubaK.PenningerJ.M.A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injuryNat. Med.11875879200510.1038/nm1267709578316007097Search in Google Scholar

Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H.R., Azman A.S., Reich N.G., Lessler J.: The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 172, 577–582 (2020)LauerS.A.GrantzK.H.BiQ.JonesF.K.ZhengQ.MeredithH.R.AzmanA.S.ReichN.G.LesslerJ.The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and ApplicationAnn. Intern. Med.172577582202010.7326/M20-0504708117232150748Search in Google Scholar

Leung K., Shum M.H., Leung G.M., Lam T.T., Wu J.T.: Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro. Surveill. 26, 2002106 (2021)LeungK.ShumM.H.LeungG.M.LamT.T.WuJ.T.Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020Euro. Surveill262002106202110.2807/1560-7917.ES.2020.26.1.2002106779160233413740Search in Google Scholar

Li D., Chen Y., Liu H., Jia Y., Li F., Wang W., Wu J., Wan Z., Cao Y., Zeng R.: Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: insights from ERS--COVID-19 study. Signal Transduct. Target Ther. 5, 62 (2020)LiD.ChenY.LiuH.JiaY.LiF.WangW.WuJ.WanZ.CaoY.ZengR.Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: insights from ERS--COVID-19 studySignal Transduct. Target Ther.562202010.1038/s41392-020-0163-5719884432371949Search in Google Scholar

Li F.: Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol. 82, 6984–6991 (2008)LiF.Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infectionsJ. Virol.8269846991200810.1128/JVI.00442-08244698618448527Search in Google Scholar

Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., Zhang Q., Wu J.: Coronavirus infections and immune responses. J. Med. Virol. 92, 424–432 (2020)LiG.FanY.LaiY.HanT.LiZ.ZhouP.PanP.WangW.HuD.LiuX.ZhangQ.WuJ.Coronavirus infections and immune responsesJ. Med. Virol.92424432202010.1002/jmv.25685716654731981224Search in Google Scholar

Li J., Liang Q. i wsp.: Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS--CoV-2 Pathogenesis. Med. 2, 99–112 (2021)LiJ.LiangQ.Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS--CoV-2 PathogenesisMed.299112202110.1016/j.medj.2020.07.002737304832838362Search in Google Scholar

Li X., Zhang W. i wsp.: Immune characteristics distinguish patients with severe disease associated with SARS-CoV-2. Immunol Res. 68, 398–404 (2020)LiX.ZhangW.Immune characteristics distinguish patients with severe disease associated with SARS-CoV-2Immunol Res.68398404202010.1007/s12026-020-09156-2752186432989677Search in Google Scholar

Lim Y.X., Ng Y.L., Tam J.P., Liu D.X.: Human Coronaviruses: A Review of Virus-Host Interactions. Diseases, 4, 26 (2016)LimY.X.NgY.L.TamJ.P.LiuD.X.Human Coronaviruses: A Review of Virus-Host InteractionsDiseases426201610.3390/diseases4030026545628528933406Search in Google Scholar

Liu L., Chen Z. i wsp.: Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS--CoV infection. JCI Insight, 4, e123158 (2019)LiuL.ChenZ.Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS--CoV infectionJCI Insight4e123158201910.1172/jci.insight.123158647843630830861Search in Google Scholar

Long Q.X., Huang A.L. i wsp.: Antibody responses to SARS--CoV-2 in patients with COVID-19. Nat. Med. 26, 845–848 (2020)LongQ.X.HuangA.L.Antibody responses to SARS--CoV-2 in patients with COVID-19Nat. Med.26845848202010.1038/s41591-020-0897-132350462Search in Google Scholar

Lu G., Gao G.F. i wsp.: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature, 500, 227–231 (2013)LuG.GaoG.F.Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26Nature500227231201310.1038/nature12328709534123831647Search in Google Scholar

Nal B.: Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J. Gen. Virol. 86, 1423‐1434 (2005)NalB.Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and EJ. Gen. Virol.8614231434200510.1099/vir.0.80671-015831954Search in Google Scholar

Narayanan K., Ramirez S.I., Lokugamage K.G., Makino S.: Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res. 202, 89–100 (2015)NarayananK.RamirezS.I.LokugamageK.G.MakinoS.Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expressionVirus Res.20289100201510.1016/j.virusres.2014.11.019444439925432065Search in Google Scholar

Neuman B.W., Buchmeier M.J. i wsp.: A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol. 174, 11‐22 (2011)NeumanB.W.BuchmeierM.J.A structural analysis of M protein in coronavirus assembly and morphologyJ. Struct. Biol.1741122201110.1016/j.jsb.2010.11.021448606121130884Search in Google Scholar

Neuman B.W., Buchmeier M.J.: Supramolecular Architecture of the Coronavirus Particle. Adv. Virus Res. 96, 1–27 (2016)NeumanB.W.BuchmeierM.J.Supramolecular Architecture of the Coronavirus ParticleAdv. Virus Res.96127201610.1016/bs.aivir.2016.08.005711236527712621Search in Google Scholar

Park J.E., Li K., Barlan A., Fehr A.R., Perlman S., McCray P.B. Jr, Gallagher T.: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc. Natl. Acad. Sci. USA, 113, 12262–12267 (2016)ParkJ.E.LiK.BarlanA.FehrA.R.PerlmanS.McCrayP.B.JrGallagherT.Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropismProc. Natl. Acad. Sci. USA1131226212267201610.1073/pnas.1608147113508699027791014Search in Google Scholar

Perlman S., Dandekar A.A.: Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5, 917–927 (2005)PerlmanS.DandekarA.A.Immunopathogenesis of coronavirus infections: implications for SARSNat. Rev. Immunol.5917927200510.1038/nri1732709732616322745Search in Google Scholar

Qin C., Tian D.S. i wsp.: Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 71, 62–768 (2020)QinC.TianD.S.Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, ChinaClin. Infect. Dis.7162768202010.1093/cid/ciaa248710812532161940Search in Google Scholar

Raj V.S., Haagmans B.L. i wsp.: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495, 251–254 (2013)RajV.S.HaagmansB.L.Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMCNature495251254201310.1038/nature12005709532623486063Search in Google Scholar

Samad A., Ahammad F., Nain Z., Alam R., Imon R.R., Hasan M., Rahman M.S.: Designing a multi-epitope vaccine against SARS--CoV-2: an immunoinformatics approach. J. Biomol. Struct. Dyn. 1–17 (2020)SamadA.AhammadF.NainZ.AlamR.ImonR.R.HasanM.RahmanM.S.Designing a multi-epitope vaccine against SARS--CoV-2: an immunoinformatics approachJ. Biomol. Struct. Dyn.117202010.1080/07391102.2020.1792347744180532677533Search in Google Scholar

Sawicki S.G., Sawicki D.L., Siddell S.G.: A contemporary view of coronavirus transcription. J. Virol. 81, 20–29 (2007)SawickiS.G.SawickiD.L.SiddellS.G.A contemporary view of coronavirus transcriptionJ. Virol.812029200710.1128/JVI.01358-06179724316928755Search in Google Scholar

Seys L.J.M., Widagdo W., Verhamme F.M., Kleinjan A., Janssens W., Joos G.F., Bracke K.R., Haagmans B.L., Brusselle G.G.: DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients. Clin. Infect. Dis. 66, 45–53 (2018)SeysL.J.M.WidagdoW.VerhammeF.M.KleinjanA.JanssensW.JoosG.F.BrackeK.R.HaagmansB.L.BrusselleG.G.DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease PatientsClin. Infect. Dis.664553201810.1093/cid/cix741710810029020176Search in Google Scholar

Smith J.C., Sausville E.L., Girish V., Yuan M.L., Vasudevan A., John K.M., Sheltzer J.M.: Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev. Cell, 53, 514–529 (2020)SmithJ.C.SausvilleE.L.GirishV.YuanM.L.VasudevanA.JohnK.M.SheltzerJ.M.Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory TractDev. Cell53514529202010.1016/j.devcel.2020.05.012722991532425701Search in Google Scholar

Snijder E.J., Decroly E., Ziebuhr J.: The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Adv. Virus Res. 96, 59–126 (2016)SnijderE.J.DecrolyE.ZiebuhrJ.The Nonstructural Proteins Directing Coronavirus RNA Synthesis and ProcessingAdv. Virus Res.9659126201610.1016/bs.aivir.2016.08.008711228627712628Search in Google Scholar

Stopsack K.H., Mucci L.A., Antonarakis E.S., Nelson P.S., Kantoff P.W.: TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov. 10, 779–782 (2020)StopsackK.H.MucciL.A.AntonarakisE.S.NelsonP.S.KantoffP.W.TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention?Cancer Discov.10779782202010.1158/2159-8290.CD-20-0451743747232276929Search in Google Scholar

Su S., Wong G., Shi W.: Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 24, 490–502 (2016)SuS.WongG.ShiW.Epidemiology, Genetic Recombination, and Pathogenesis of CoronavirusesTrends Microbiol.24490502201610.1016/j.tim.2016.03.003712551127012512Search in Google Scholar

Tan L., Wang Q., Zhang D., Ding J., Huang Q., Tang Y.Q., Wang Q., Miao H.: Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct. Target Ther. 5, 33 (2020)TanL.WangQ.ZhangD.DingJ.HuangQ.TangY.Q.WangQ.MiaoH.Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive studySignal Transduct. Target Ther.533202010.1038/s41392-020-0148-4710041932296069Search in Google Scholar

Terada Y., Matsui N., Noguchi K., Kuwata R., Shimoda H., Soma T., Mochizuki M., Maeda K.: Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One, 9, e106534 (2014)TeradaY.MatsuiN.NoguchiK.KuwataR.ShimodaH.SomaT.MochizukiM.MaedaK.Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronavirusesPLoS One9e106534201410.1371/journal.pone.0106534415229225180686Search in Google Scholar

Tseng C.T., Sbrana E., Iwata-Yoshikawa N., Newman P.C., Garron T., Atmar R.L., Peters C.J., Couch R.B.: Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 7, e35421 (2012)TsengC.T.SbranaE.Iwata-YoshikawaN.NewmanP.C.GarronT.AtmarR.L.PetersC.J.CouchR.B.Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virusPLoS One7e35421201210.1371/journal.pone.0035421333506022536382Search in Google Scholar

Volz E., Ferguson N.M. i wsp.: Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. medRxiv, 2020.12.30, 20249034VolzE.FergusonN.M.Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic datamedRxiv202012302024903410.1101/2020.12.30.20249034Search in Google Scholar

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D.: Structure, Function, and Antigenicity of the SARS--CoV-2 Spike Glycoprotein. Cell, 181, 281–292 (2020)WallsA.C.ParkY.J.TortoriciM.A.WallA.McGuireA.T.VeeslerD.Structure, Function, and Antigenicity of the SARS--CoV-2 Spike GlycoproteinCell181281292202010.1016/j.cell.2020.02.058710259932155444Search in Google Scholar

Wambier C.G., Goren A., Vaño-Galván S., Ramos P.M., Ossimetha A., Nau G., Herrera S., McCoy J.: Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev. Res. 81, 771–776 (2020)WambierC.G.GorenA.Vaño-GalvánS.RamosP.M.OssimethaA.NauG.HerreraS.McCoyJ.Androgen sensitivity gateway to COVID-19 disease severityDrug Dev. Res.81771776202010.1002/ddr.21688727309532412125Search in Google Scholar

Wan Y., Li F. i wsp.: Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J. Virol. 94, e02015–19 (2020)WanY.LiF.Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus EntryJ. Virol.94e0201519202010.1128/JVI.02015-19702235131826992Search in Google Scholar

Wang N., Wang X. i wsp.: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23, 986–993 (2013)WangN.WangX.Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4Cell Res.23986993201310.1038/cr.2013.92373156923835475Search in Google Scholar

Wang Q., Liu G. i wsp.: Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates. ACS Infect. Dis. 2, 361–376 (2016)WangQ.LiuG.Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human PrimatesACS Infect. Dis.2361376201610.1021/acsinfecdis.6b00006707552227627203Search in Google Scholar

WHO. Middle East respiratory syndrome coronavirus (MERS--CoV). November, 2019, http://www.who.int/emergencies/mers-cov/en/ (17.02.2021)WHOMiddle East respiratory syndrome coronavirus (MERS--CoV)November2019http://www.who.int/emergencies/mers-cov/en/ (17.02.2021)Search in Google Scholar

WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Dec 31, 2003, https://www.who.int/csr/sars/country/table2004_04_21/en/ (17.02.2021)WHOSummary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003Dec312003https://www.who.int/csr/sars/country/table2004_04_21/en/ (17.02.2021)Search in Google Scholar

Widagdo W., Haagmans B. i wsp.: Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels. J. Virol. 90, 4838–4842 (2016)WidagdoW.HaagmansB.Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary CamelsJ. Virol.9048384842201610.1128/JVI.02994-15Search in Google Scholar

Widagdo W., Sooksawasdi Na Ayudhya S., Hundie G.B., Haagmans B.L.: Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses, 11, 280 (2019)WidagdoW.Sooksawasdi Na AyudhyaS.HundieG.B.HaagmansB.L.Host Determinants of MERS-CoV Transmission and PathogenesisViruses11280201910.3390/v11030280Search in Google Scholar

Wilk A.J., Blish C.A. i wsp.: A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020)WilkA.J.BlishC.A.A single-cell atlas of the peripheral immune response in patients with severe COVID-19Nat. Med.2610701076202010.1038/s41591-020-0944-ySearch in Google Scholar

World Health Organization. Coronavirus disease (COVID19) Weekly Epidemiological Update. https://covid19.who.int/ (17.02.2021)World Health OrganizationCoronavirus disease (COVID19) Weekly Epidemiological Updatehttps://covid19.who.int/ (17.02.2021)Search in Google Scholar

Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S.: Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science, 367, 1260–1263 (2020)WrappD.WangN.CorbettK.S.GoldsmithJ.A.HsiehC.L.AbionaO.GrahamB.S.McLellanJ.S.Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion ConformationScience36712601263202010.1126/science.abb2507Search in Google Scholar

Xie X., Chen J., Wang X., Zhang F., Liu Y.: Age- and gender--related difference of ACE2 expression in rat lung. Life Sci. 78, 2166–2171 (2006)XieX.ChenJ.WangX.ZhangF.LiuY.Age- and gender--related difference of ACE2 expression in rat lungLife Sci.7821662171200610.1016/j.lfs.2006.09.028Search in Google Scholar

Xu Z., Wang F.S. i wsp.: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020)XuZ.WangF.S.Pathological findings of COVID-19 associated with acute respiratory distress syndromeLancet Respir. Med.8420422202010.1016/S2213-2600(20)30076-XSearch in Google Scholar

Yang Y., Liu C., Du L., Jiang S., Shi Z., Baric R.S., Li F.: Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus. J. Virol. 89, 9119–9123 (2015)YangY.LiuC.DuL.JiangS.ShiZ.BaricR.S.LiF.Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome CoronavirusJ. Virol.8991199123201510.1128/JVI.01279-15452405426063432Search in Google Scholar

Yoshimoto F.K.: The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 39, 198–216 (2020)YoshimotoF.K.The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19Protein J.39198216202010.1007/s10930-020-09901-4724519132447571Search in Google Scholar

Zhang B., Zhou X., Qiu Y., Song Y., Feng F., Feng J., Song Q., Jia Q., Wang J.: Clinical characteristics of 82 cases of death from COVID-19. PLoS One, 15, e0235458 (2020)ZhangB.ZhouX.QiuY.SongY.FengF.FengJ.SongQ.JiaQ.WangJ.Clinical characteristics of 82 cases of death from COVID-19PLoS One15e0235458202010.1371/journal.pone.0235458734713032645044Search in Google Scholar

Zhang L., Choe H. i wsp.: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 6013 (2020)ZhangL.ChoeH.SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivityNat. Commun.116013202010.1038/s41467-020-19808-4769330233243994Search in Google Scholar

Zhang L., Jackson C.B., Mou H., Ojha A., Rangarajan E.S., Izard T., Farzan M., Choe H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv [Preprint], 2020.06.12, 148726ZhangL.JacksonC.B.MouH.OjhaA.RangarajanE.S.IzardT.FarzanM.ChoeH.The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivitybioRxiv [Preprint], 2020.06.1214872610.1101/2020.06.12.148726Search in Google Scholar

Zhao J., Zhang Z. i wsp.: Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin. Infect. Dis. 71, 2027–2034 (2020)ZhaoJ.ZhangZ.Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019Clin. Infect. Dis.7120272034202010.1093/cid/ciaa344Search in Google Scholar

Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W.: Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS--CoV-2. Am. J. Respir. Crit. Care. Med. 202, 756–759 (2020)ZhaoY.ZhaoZ.WangY.ZhouY.MaY.ZuoW.Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS--CoV-2Am. J. Respir. Crit. Care. Med.202756759202010.1164/rccm.202001-0179LESearch in Google Scholar

Ziegler C.G.K., Ordovas-Montanes J. i wsp.: SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 181, 1016–1035 (2020)ZieglerC.G.K.Ordovas-MontanesJ.SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across TissuesCell18110161035202010.1016/j.cell.2020.04.035Search in Google Scholar

Zumla A., Hui D.S., Perlman S.: Middle East respiratory syndrome. Lancet, 3, 60454–60458 (2015)ZumlaA.HuiD.S.PerlmanS.Middle East respiratory syndromeLancet36045460458201510.1016/S0140-6736(15)60454-8Search in Google Scholar

Zuo Y., Knight J.S. i wsp.: Neutrophil extracellular traps in COVID-19. JCI Insight. 5, e138999 (2020)ZuoY.KnightJ.S.Neutrophil extracellular traps in COVID-19JCI Insight.5e138999202010.1172/jci.insight.138999730805732329756Search in Google Scholar

eISSN:
2545-3149
Languages:
English, Polish
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology