Cite

Xu F.: Applications of oxidoreductases: recent progress. Ind. Biotechnol. 1, 38–50 (2005)XuF.Applications of oxidoreductases: recent progressInd. Biotechnol.13850200510.1089/ind.2005.1.38Search in Google Scholar

Chapman J., Ismail A., Dinu C.: Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts, DOI: 10.3390/catal8060238 (2018)ChapmanJ.IsmailA.DinuC.Industrial applications of enzymes: recent advances, techniques, and outlooksCatalysts10.3390/catal80602382018Open DOISearch in Google Scholar

Martínez A.T., Alcande M. i wsp.: Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 35, 815–831 (2017)MartínezA.T.AlcandeM.i wsp.Oxidoreductases on their way to industrial biotransformationsBiotechnol. Adv.35815831201710.1016/j.biotechadv.2017.06.003Search in Google Scholar

Westermark U., Eriksson K.-E.: Cellobiose: quinone oxidoreductase, a new wood degrading enzyme from white-rot fungi. Acta. Chem. Scand. 828, 209–214 (1974)WestermarkU.ErikssonK.-E.Cellobiose: quinone oxidoreductase, a new wood degrading enzyme from white-rot fungiActa. Chem. Scand.828209214197410.3891/acta.chem.scand.28b-0209Search in Google Scholar

Zamocky M., Ludwig R., Peterbauer C., Hallberg B.M., Divne C., Nicholls P., Haltrich D.: Cellobiose dehydrogenase-a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr. Protein Pept. Sci. 7, 255–280 (2006)ZamockyM.LudwigR.PeterbauerC.HallbergB.M.DivneC.NichollsP.HaltrichD.Cellobiose dehydrogenase-a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungiCurr. Protein Pept. Sci.7255280200610.2174/138920306777452367Search in Google Scholar

Ayers A.R., Ayers S.B., Eriksson K.-E.: Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur. J. Biochem. 90, 171–181 (1978)AyersA.R.AyersS.B.ErikssonK.-E.Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentumEur. J. Biochem.90171181197810.1111/j.1432-1033.1978.tb12588.xSearch in Google Scholar

Wood J.D., Wood P.M.: Evidence that cellobiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim. Biophys. 1119, 90–96 (1992)WoodJ.D.WoodP.M.Evidence that cellobiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidaseBiochim. Biophys.11199096199210.1016/0167-4838(92)90239-ASearch in Google Scholar

Cameron M.D., Aust S.D.: Cellobiose dehydrogenase – an extracellular fungal flavocytochrome. Enzym. Microb. Technol. 28, 129–138 (2001)CameronM.D.AustS.D.Cellobiose dehydrogenase – an extracellular fungal flavocytochromeEnzym. Microb. Technol.28129138200110.1016/S0141-0229(00)00307-0Search in Google Scholar

Harreither W., Sygmund C., Augustin M., Narciso M., Rabinovich M.L., Gorton L., Haltrich D., Ludwig R.: Catalytic properties and classification of cellobiose dehydrogenases from Ascomycetes. Appl. Environ. Microbiol. 77, 1804–1815 (2011)HarreitherW.SygmundC.AugustinM.NarcisoM.RabinovichM.L.GortonL.HaltrichD.LudwigR.Catalytic properties and classification of cellobiose dehydrogenases from AscomycetesAppl. Environ. Microbiol.7718041815201110.1128/AEM.02052-10306729121216904Search in Google Scholar

Sulej J., Janusz G., Osińska-Jaroszuk M., Rachubik P., Mazur A., Komaniecka I., Choma A., Rogalski J.: Characterization of cellobiose dehydrogenase from a biotechnologically important Cerrena unicolor strain. Appl. Biochem. Biotechnol. 176, 1638–1658 (2015)SulejJ.JanuszG.Osińska-JaroszukM.RachubikP.MazurA.KomanieckaI.ChomaA.RogalskiJ.Characterization of cellobiose dehydrogenase from a biotechnologically important Cerrena unicolor strainAppl. Biochem. Biotechnol.17616381658201510.1007/s12010-015-1667-2451524826003328Search in Google Scholar

Schulz C.: Cellobiose dehydrogenase on electrodes-an electrochemical biosensor for various analytes tunable by positive charges. Department of Chemistry, Lund University; (2015)SchulzC.Cellobiose dehydrogenase on electrodes-an electrochemical biosensor for various analytes tunable by positive chargesDepartment of Chemistry, Lund University2015Search in Google Scholar

Henriksson G., Salumects A., Divne C., Pettersson G.: Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem. J. 324, 833–838 (1997)HenrikssonG.SalumectsA.DivneC.PetterssonG.Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1Biochem. J.324833838199710.1042/bj3240833Search in Google Scholar

Ma S., Preims M., Piumi F., Kappel L., Seiboth B., Record E., Kracher D., Ludwig R.: Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb. Cell Fact. 16, 1–14 (2017)MaS.PreimsM.PiumiF.KappelL.SeibothB.RecordE.KracherD.LudwigR.Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systemsMicrob. Cell Fact.16114201710.1186/s12934-017-0653-5Search in Google Scholar

Ferri S., Sode K.: Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli. Biotechnol. Lett. 32, 855–859. (2010)FerriS.SodeK.Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coliBiotechnol. Lett.32855859201010.1007/s10529-010-0215-ySearch in Google Scholar

Bey M., Berrin J.G., Poidevin L., Sigoillot J.C.: Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes. Microb. Cell Fact. 10, DOI:10.1186/1475-2859-10-113 (2011)BeyM.BerrinJ.G.PoidevinL.SigoillotJ.C.Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processesMicrob. Cell Fact.1010.1186/1475-2859-10-1132011Open DOISearch in Google Scholar

Harreither W., Felice A.K.G., Paukner R., Gorton L., Ludwig R., Sygmund C.: Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells. Biotechnol. J. 7, 1359–1366 (2012)HarreitherW.FeliceA.K.G.PauknerR.GortonL.LudwigR.SygmundC.Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cellsBiotechnol. J.713591366201210.1002/biot.201200049Search in Google Scholar

Turbe-Doan A., Arfi Y., Record E., Estrada-Alvarado I., Levasseur A.: Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl. Microbiol. Biotechnol. 97, 4873–4885 (2013)Turbe-DoanA.ArfiY.RecordE.Estrada-AlvaradoI.LevasseurA.Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat strawAppl. Microbiol. Biotechnol.9748734885201310.1007/s00253-012-4355-ySearch in Google Scholar

Punt P.J., van Biezen N., Conesa A., Albers A., Mangnus J., van den Hondel C.: Filamentous fungi as cell factories for metabolite production. Trends Biotechnol. 20, 200–206 (2002)PuntP.J.van BiezenN.ConesaA.AlbersA.MangnusJ.van den HondelC.Filamentous fungi as cell factories for metabolite productionTrends Biotechnol.20200206200210.1016/S0167-7799(02)01933-9Search in Google Scholar

Langston J.A., Brown K., Xu F., Borch K., Garner A., Sweeney M.D.: Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditions. Biochim. Biophys. Acta 1824, 802–812 (2012)LangstonJ.A.BrownK.XuF.BorchK.GarnerA.SweeneyM.D.Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditionsBiochim. Biophys. Acta1824802812201210.1016/j.bbapap.2012.03.00922484439Search in Google Scholar

Sützl L., Laurent C.V.F.P., Abrera A.T., Schütz G., Ludwig R., Haltrich D.: Multiplicity of enzymatic functions in the CAZy AA3 family. Appl. Microbiol. Biotechnol. 102, 2477–2492 (2018)SützlL.LaurentC.V.F.P.AbreraA.T.SchützG.LudwigR.HaltrichD.Multiplicity of enzymatic functions in the CAZy AA3 familyAppl. Microbiol. Biotechnol.10224772492201810.1007/s00253-018-8784-0584721229411063Search in Google Scholar

Bao W.J., Usha S.N., Renganathan V.: Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. Biophys. 300, 705–713 (1993)BaoW.J.UshaS.N.RenganathanV.Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporiumArch. Biochem. Biophys.300705713199310.1006/abbi.1993.10988434950Search in Google Scholar

Xia Z., Mathews F.S.: Molecular structure of flavocytochrome b2 at 24 Å resolution. J. Mol. Biol. 212, 837–863 (1990)XiaZ.MathewsF.S.Molecular structure of flavocytochrome b2 at 24 Å resolutionJ. Mol. Biol.212837863199010.1016/0022-2836(90)90240-MSearch in Google Scholar

Qin X., Su X., Luo H., Ma R., Yao B., Ma F.: Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnol. Biofuels, 11, DOI: 10.1186/s13068-018-1060-9 (2018)QinX.SuX.LuoH.MaR.YaoB.MaF.Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analysesBiotechnol. Biofuels1110.1186/s13068-018-1060-92018Open DOISearch in Google Scholar

Valadares F., Gonçalves T.A., Gonçalves D.S.P.O., Segato F., Romanel E., Milagres A.M.F., Squina F.M., Ferraz A.: Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. Biotechnol. Biofuels, 9, DOI: 10.1186/s13068-016-0525-y (2016)ValadaresF.GonçalvesT.A.GonçalvesD.S.P.O.SegatoF.RomanelE.MilagresA.M.F.SquinaF.M.FerrazA.Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharificationBiotechnol. Biofuels910.1186/s13068-016-0525-y2016Open DOISearch in Google Scholar

Henriksson G., Pettersson G., Johansson G., Ruiz A., Uzcategui E.: Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur. J. Biochem. 196, 101–106 (1991)HenrikssonG.PetterssonG.JohanssonG.RuizA.UzcateguiE.Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domainsEur. J. Biochem.196101106199110.1111/j.1432-1033.1991.tb15791.xSearch in Google Scholar

Henriksson G., Johansson G., Pettersson G.: Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochim. Biophys. Acta-Bioenerg. 1144, 184–190 (1993)HenrikssonG.JohanssonG.PetterssonG.Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase?Biochim. Biophys. Acta-Bioenerg.1144184190199310.1016/0005-2728(93)90171-BSearch in Google Scholar

Hallberg B.M., Bergfors T., Bäckbro K., Pettersson G., Henriksson G., Divne C.: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure, 8, 79–88 (2000)HallbergB.M.BergforsT.BäckbroK.PetterssonG.HenrikssonG.DivneC.A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenaseStructure87988200010.1016/S0969-2126(00)00082-4Search in Google Scholar

Rose A.S., Bradley A., Valasatava Y., Duarte J., Prlic A., Rose P.: NGL viewer: web-based molecular graphics for large complexes. Bioinformatics, 34, 3755–3758 (2018)RoseA.S.BradleyA.ValasatavaY.DuarteJ.PrlicA.RoseP.NGL viewer: web-based molecular graphics for large complexesBioinformatics3437553758201810.1093/bioinformatics/bty419619885829850778Search in Google Scholar

Stoica L., Ruzgas T., Ludwig R., Haltrich D., Gorton L.: Direct electron transfers-a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium. Langmuir, 22, 10801–10806 (2006)StoicaL.RuzgasT.LudwigR.HaltrichD.GortonL.Direct electron transfers-a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporiumLangmuir221080110806200610.1021/la061190f17129063Search in Google Scholar

Matsumura H., Ortiz R., Ludwig R., Igarashi K., Samejima M., Gordon L.: Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Langmuir, 28, 10925–10933 (2012)MatsumuraH.OrtizR.LudwigR.IgarashiK.SamejimaM.GordonL.Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodesLangmuir281092510933201210.1021/la301885822746277Search in Google Scholar

Stoica L., Lindgren-Sjölander A., Ruzgas T., Gorton L.: Biosensor based on cellobiose dehydrogenase for detection of catecholamines. Anal. Chem. 76, 4690–4696 (2004)StoicaL.Lindgren-SjölanderA.RuzgasT.GortonL.Biosensor based on cellobiose dehydrogenase for detection of catecholaminesAnal. Chem.7646904696200410.1021/ac049582j15307778Search in Google Scholar

Safina G., Ludwig R., Gorton L.: A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes. Electrochim. Acta 55, 7690–7695 (2010)SafinaG.LudwigR.GortonL.A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodesElectrochim. Acta5576907695201010.1016/j.electacta.2009.10.052Search in Google Scholar

Tasca F., Gorton L., Harreither W., Haltrich D., Ludwig R., Noll G.: Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Anal. Chem. 81, 2791–2798 (2009)TascaF.GortonL.HarreitherW.HaltrichD.LudwigR.NollG.Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordidaAnal. Chem.8127912798200910.1021/ac900225z19256522Search in Google Scholar

Tasca F., Harreither W., Ludwig R., Gooding J.J., Gorton L.: Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface. Anal. Chem. 83, 3042–3049 (2011)TascaF.HarreitherW.LudwigR.GoodingJ.J.GortonL.Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surfaceAnal. Chem.8330423049201110.1021/ac103250b307699221417322Search in Google Scholar

Stoica L., Schuhmann W. i wsp.: Membrane-less biofuel cell based on cellobiose dehydrogenase (anode)/ laccase (cathode) wired via specific os-redox polymers. Fuel Cells, 9, 53–62 (2009)StoicaL.SchuhmannW.i wsp.Membrane-less biofuel cell based on cellobiose dehydrogenase (anode)/ laccase (cathode) wired via specific os-redox polymersFuel Cells95362200910.1002/fuce.200800033Search in Google Scholar

Van Hecke W., Bhagwat A., Ludwig R., Dewulf J., Haltrich D., Langenhove H.: Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid. Biotechnol. Bioeng. 102, 1475–1482 (2009)Van HeckeW.BhagwatA.LudwigR.DewulfJ.HaltrichD.LangenhoveH.Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acidBiotechnol. Bioeng.10214751482200910.1002/bit.2216518988269Search in Google Scholar

Ortiz R., Ludwig R., Gorton L.: Highly efficient membraneless glucose bioanode based on Corynascus thermophilus cellobiose dehydrogenase on aryl diazonium-activated single-walled carbon canotubes. Chem. Electro. Chem. 1, 1948–1956 (2014)OrtizR.LudwigR.GortonL.Highly efficient membraneless glucose bioanode based on Corynascus thermophilus cellobiose dehydrogenase on aryl diazonium-activated single-walled carbon canotubesChem. Electro. Chem.1194819562014Search in Google Scholar

Coman V., Ludwig R., Harreither W., Haltrich D., Gorton L., Ruzgas T., Shleev S.: A direct electron transfer-based glucose/ oxygen biofuel cell operating in human serum. Fuel Cells, 10, 9–16 (2010)ComanV.LudwigR.HarreitherW.HaltrichD.GortonL.RuzgasT.ShleevS.A direct electron transfer-based glucose/ oxygen biofuel cell operating in human serumFuel Cells10916201010.1002/fuce.200900121Search in Google Scholar

Bollella P., Mazzei F., Favero G., Fusco G., Ludwig R., Gorton L., Antiochia R.: Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: The role of an ordered nanostructuration. Biosens. Bioelectron. 88, 196–203 (2017)BollellaP.MazzeiF.FaveroG.FuscoG.LudwigR.GortonL.AntiochiaR.Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: The role of an ordered nanostructurationBiosens. Bioelectron.88196203201710.1016/j.bios.2016.08.02727660019Search in Google Scholar

Tasca F., Zafar N.M., Harreither W., Noll G., Ludwig R., Gorton L.: A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubes. Analyst, 136, 2033–2036 (2011)TascaF.ZafarN.M.HarreitherW.NollG.LudwigR.GortonL.A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubesAnalyst13620332036201110.1039/C0AN00311E20672160Search in Google Scholar

Zafar M.N., Safina G., Ludwig R., Gorton L.: Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions. Anal. Biochem. 425, 36–42 (2012)ZafarM.N.SafinaG.LudwigR.GortonL.Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditionsAnal. Biochem.4253642201210.1016/j.ab.2012.02.02622381371Search in Google Scholar

Cipri A., Schulz C., Ludwig R., Gorton L., del Valle M.: A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes. Biosens. Bioelectron. 79, 515–521 (2016)CipriA.SchulzC.LudwigR.GortonL.del ValleM.A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytesBiosens. Bioelectron.79515521201610.1016/j.bios.2015.12.06926748369Search in Google Scholar

Coman V., Vaz-Dominguez C., Ludwig R., Harreither W., Haltrich D., De Lacey A., Ruzgas T., Gordon L., Shleev S.: A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell. Phys. Chem. Chem. Phys. 10, 6093–6096 (2008)ComanV.Vaz-DominguezC.LudwigR.HarreitherW.HaltrichD.De LaceyA.RuzgasT.GordonL.ShleevS.A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cellPhys. Chem. Chem. Phys.1060936096200810.1039/b808859d18846297Search in Google Scholar

Harreither W., Coman V., Ludwig R., Haltrich D., Gorton L.: Investigation of graphite electrodes modified with cellobiose dehydrogenase from the Ascomycete Myriococcum thermophilum. Electroanalysis, 19, 172–180 (2007)HarreitherW.ComanV.LudwigR.HaltrichD.GortonL.Investigation of graphite electrodes modified with cellobiose dehydrogenase from the Ascomycete Myriococcum thermophilumElectroanalysis19172180200710.1002/elan.200603688Search in Google Scholar

Tasca F., Gorton L., Harreither W., Haltrich D., Ludwig R., Noll G.: Highly efficient and versatile anodes for biofuel cells based on cellobiose dehydrogenase from Myriococcum thermophilum. J. Phys. Chem. C, 112, 13668–13673 (2008)TascaF.GortonL.HarreitherW.HaltrichD.LudwigR.NollG.Highly efficient and versatile anodes for biofuel cells based on cellobiose dehydrogenase from Myriococcum thermophilumJ. Phys. Chem. C1121366813673200810.1021/jp805092mSearch in Google Scholar

Pricelius S., Ludwig R., Lant N., Haltrich D., Guebitz G.M.: Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2. Appl. Microbiol. Biotechnol. 85, 75–83 (2009)PriceliusS.LudwigR.LantN.HaltrichD.GuebitzG.M.Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2Appl. Microbiol. Biotechnol.857583200910.1007/s00253-009-2062-019506859Search in Google Scholar

Flitsch A., Prasetyo E.N., Sygmund C., Ludwig R., Nyanhongo G.S., Guebitz G.M.: Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase. Enzyme. Microb. Technol. 52, 60–67 (2013)FlitschA.PrasetyoE.N.SygmundC.LudwigR.NyanhongoG.S.GuebitzG.M.Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenaseEnzyme. Microb. Technol.526067201310.1016/j.enzmictec.2012.10.00723199740Search in Google Scholar

Nyanhongo G.S., Sygmund C., Ludwig R., Prasetyo E.N., Guebitz G.M.: An antioxidant regenerating system for continuous quenching of free radicals in chronic wounds. Eur. J. Pharm. Biopharm. 83, 396–404 (2013)NyanhongoG.S.SygmundC.LudwigR.PrasetyoE.N.GuebitzG.M.An antioxidant regenerating system for continuous quenching of free radicals in chronic woundsEur. J. Pharm. Biopharm.83396404201310.1016/j.ejpb.2012.10.01323153671Search in Google Scholar

Thallinger B., Argirova M., Lesseva M., Ludwig R., Sygmund C., Schlick A., Nyanhongo G.S., Guebitz G.M.: Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase. Int. J. Antimicrob. Agents. 44, 402–408 (2014)ThallingerB.ArgirovaM.LessevaM.LudwigR.SygmundC.SchlickA.NyanhongoG.S.GuebitzG.M.Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenaseInt. J. Antimicrob. Agents.44402408201410.1016/j.ijantimicag.2014.06.01625176584Search in Google Scholar

Thallinger B., Brandauer M., Burger P., Sygmund C., Ludwig R., Ivanova K., Nyanhongo G.S., Guebitz G.M.: Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. J. Biomed. Mater. Res. – Part B Appl. Biomater. 104, 1448–1456 (2016)ThallingerB.BrandauerM.BurgerP.SygmundC.LudwigR.IvanovaK.NyanhongoG.S.GuebitzG.M.Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm systemJ. Biomed. Mater. Res. – Part B Appl. Biomater.10414481456201610.1002/jbm.b.3349126251187Search in Google Scholar

Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M.: Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 8, 97–109 (2013)ThallingerB.PrasetyoE.N.NyanhongoG.S.GuebitzG.M.Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilmsBiotechnol. J.897109201310.1002/biot.20120031323281326Search in Google Scholar

Prasetyo E.N., Rodriguez R.D., Lukesch B., Weiss S., Murkovic M., Katsoyannos E., Sygmund C., Ludwig R., Nyanhongo G.S., Guebitz G.M.: Laccase – cellobiose dehydrogenase-catalyzed detoxification of phenolic-rich olive processing residues. Int. J. Environ. Sci. Technol. 12, 1343–1352 (2015)PrasetyoE.N.RodriguezR.D.LukeschB.WeissS.MurkovicM.KatsoyannosE.SygmundC.LudwigR.NyanhongoG.S.GuebitzG.M.Laccase – cellobiose dehydrogenase-catalyzed detoxification of phenolic-rich olive processing residuesInt. J. Environ. Sci. Technol.1213431352201510.1007/s13762-014-0526-ySearch in Google Scholar

Krikstolaityte V., Lamberg P., Toscano M.D., Silow M., Eicher-Lorka O., Ramanavicius A., Niaura G., Abariute L., Ruzgas T., Shleev S.: Mediatorless carbohydrate/oxygen biofuel cells with improved cellobiose dehydrogenase based bioanode. Fuel Cells, 14, 792–800 (2014)KrikstolaityteV.LambergP.ToscanoM.D.SilowM.Eicher-LorkaO.RamanaviciusA.NiauraG.AbariuteL.RuzgasT.ShleevS.Mediatorless carbohydrate/oxygen biofuel cells with improved cellobiose dehydrogenase based bioanodeFuel Cells14792800201410.1002/fuce.201400003Search in Google Scholar

Fähnrich P., Irrgang K.: Conversion of cellulose to sugars and cellobionic acid by the extracellular enzyme system of Chaetomium cellulolyticum. Biotechnol. Lett. 4, 775–780 (1982)FähnrichP.IrrgangK.Conversion of cellulose to sugars and cellobionic acid by the extracellular enzyme system of Chaetomium cellulolyticumBiotechnol. Lett.4775780198210.1007/BF00131151Search in Google Scholar

Hildebrand A., Kasuga T., Fan Z.: Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition. PLoS One, 10, DOI: 10.1371/journal.pone.0123006 (2015)HildebrandA.KasugaT.FanZ.Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator additionPLoS One1010.1371/journal.pone.01230062015438883525849253Open DOISearch in Google Scholar

Lin H., Hildebrand A., Kasuga T., Fan Z.: Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition. Enzyme. Microb. Technol. 99, 25–31 (2017)LinH.HildebrandA.KasugaT.FanZ.Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme additionEnzyme. Microb. Technol.992531201710.1016/j.enzmictec.2016.12.00928193328Search in Google Scholar

Hildebrand A., Bennett Addison J., Kasuga T., Fan Z.: Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase. Biochem. Eng. J. 109, 236–342 (2016)HildebrandA.Bennett AddisonJ.KasugaT.FanZ.Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenaseBiochem. Eng. J.109236342201610.1016/j.bej.2016.01.024Search in Google Scholar

McDonnell G., Russell A.D.: Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12, 147–179 (1999)McDonnellG.RussellA.D.Antiseptics and disinfectants: activity, action, and resistanceClin. Microbiol. Rev.12147179199910.1128/CMR.12.1.147889119880479Search in Google Scholar

Nyanhongo G.S., Thallinger B., Guebitz G.M. Cellobiose dehydrogenase-based biomedical applications. Process. Biochem. 59, 37–45 (2017)NyanhongoG.S.ThallingerB.GuebitzG.M.Cellobiose dehydrogenase-based biomedical applicationsProcess. Biochem.593745201710.1016/j.procbio.2017.02.023Search in Google Scholar

Djeribi R., Bouchloukh W., Jouenne T., Menaa B.: Characterization of bacterial biofilms formed on urinary catheters. Am. J. Infect. Control. 40, 854–859 (2012)DjeribiR.BouchloukhW.JouenneT.MenaaB.Characterization of bacterial biofilms formed on urinary cathetersAm. J. Infect. Control.40854859201210.1016/j.ajic.2011.10.00922325732Search in Google Scholar

Römling U., Balsalobre C.: Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 272, 541–561 (2012)RömlingU.BalsalobreC.Biofilm infections, their resilience to therapy and innovative treatment strategiesJ. Intern. Med.272541561201210.1111/joim.1200423025745Search in Google Scholar

Soto S.M.: Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv. Biol. DOI: 10.1155/2014/543974 (2014)SotoS.M.Importance of biofilms in urinary tract infections: new therapeutic approachesAdv. Biol.10.1155/2014/5439742014Open DOISearch in Google Scholar

Lequette Y., Boels G., Clarisse M., Faille C.: Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling, 26, 421–431 (2010)LequetteY.BoelsG.ClarisseM.FailleC.Using enzymes to remove biofilms of bacterial isolates sampled in the food-industryBiofouling26421431201010.1080/08927011003699535Search in Google Scholar

Stewart P.S., Costerton J.W.: Antibiotic resistance of bacteria in biofilms. Lancet (London, England), 358, 135–138 (2001)StewartP.S.CostertonJ.W.Antibiotic resistance of bacteria in biofilmsLancet (London, England)358135138200110.1016/S0140-6736(01)05321-1Search in Google Scholar

Nyanhongo G.S., Sygmund C., Ludwig R., Prasetyo E.N., Guebitz G.M.: Synthesis of multifunctional bioresponsive polymers for the management of chronic wounds. J. Biomed. Mater. Res. – Part B Appl. Biomater. 101 B: 882–891 (2013)NyanhongoG.S.SygmundC.LudwigR.PrasetyoE.N.GuebitzG.M.Synthesis of multifunctional bioresponsive polymers for the management of chronic woundsJ. Biomed. Mater. Res. – Part B Appl. Biomater.101 B882891201310.1002/jbm.b.32893Search in Google Scholar

Alonso S., Rendueles M., Díaz M.: Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol. Adv. 31, 1275–1291 (2013)AlonsoS.RenduelesM.DíazM.Bio-production of lactobionic acid: current status, applications and future prospectsBiotechnol. Adv.3112751291201310.1016/j.biotechadv.2013.04.010Search in Google Scholar

Varela O.: Oxidative reactions and degradations of sugars and polysaccharides. Adv. Carbohydr. Chem. Biochem. 58, 307–369 (2003)VarelaO.Oxidative reactions and degradations of sugars and polysaccharidesAdv. Carbohydr. Chem. Biochem.58307369200310.1016/S0065-2318(03)58006-4Search in Google Scholar

Green B.A., Yu R.J., Van Scott E.J.: Clinical and cosmeceutical uses of hydroxyacids. Clin. Dermatol. 27, 495–501 (2009)GreenB.A.YuR.J.Van ScottE.J.Clinical and cosmeceutical uses of hydroxyacidsClin. Dermatol.27495501200910.1016/j.clindermatol.2009.06.023Search in Google Scholar

Tasic-Kostov M., Savic S., Lukic M., Tamburic S., Pavlovic M., Vuleta G.: Lactobionic acid in a natural alkylpolyglucoside-based vehicle: assessing safety and efficacy aspects in comparison to glycolic acid. J. Cosmet. Dermatol. 9, 3–10 (2010)Tasic-KostovM.SavicS.LukicM.TamburicS.PavlovicM.VuletaG.Lactobionic acid in a natural alkylpolyglucoside-based vehicle: assessing safety and efficacy aspects in comparison to glycolic acidJ. Cosmet. Dermatol.9310201010.1111/j.1473-2165.2010.00474.xSearch in Google Scholar

Baminger U., Ludwig R., Galhaup C., Leitner C., Kulbe K.D., Haltrich D.; Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteins. J. Mol. Catal. B Enzym. 11, 541–550 (2001)BamingerU.LudwigR.GalhaupC.LeitnerC.KulbeK.D.HaltrichD.Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteinsJ. Mol. Catal. B Enzym.11541550200110.1016/S1381-1177(00)00034-5Search in Google Scholar

Miyamoto Y., Ooi T., Kinoshita S.: Production of lactobionic acid from whey by Pseudomonas sp. LS13-1. Biotechnol. Lett. 22, 427–430 (2000)MiyamotoY.OoiT.KinoshitaS.Production of lactobionic acid from whey by Pseudomonas sp. LS13-1Biotechnol. Lett.22427430200010.1023/A:1005617903152Search in Google Scholar

Dhariwal A., Mavrov V., Schroeder I.: Production of lactobionic acid with process integrated electrochemical enzyme regeneration and optimisation of process variables using response surface methods (RSM). J. Mol. Catal. B Enzym. 42, 64–69 (2006)DhariwalA.MavrovV.SchroederI.Production of lactobionic acid with process integrated electrochemical enzyme regeneration and optimisation of process variables using response surface methods (RSM)J. Mol. Catal. B Enzym.426469200610.1016/j.molcatb.2006.06.013Search in Google Scholar

Fort S., Boyer V., Greffe L., Davies G.J., Moroz O., Christiansen L., Schulein M., Cottaz S., Driguez H.: Highly efficient synthesis of β (1 → 4)-oligo- and -polysaccharides using a mutant cellulase. J. Am. Chem. Soc. 122, 5429–5437 (2000)FortS.BoyerV.GreffeL.DaviesG.J.MorozO.ChristiansenL.SchuleinM.CottazS.DriguezH.Highly efficient synthesis of β (1 → 4)-oligo- and -polysaccharides using a mutant cellulaseJ. Am. Chem. Soc.12254295437200010.1021/ja9936520Search in Google Scholar

Chaveriat L., Stasik I., Demailly G., Beaupère D.: The direct synthesis of 6-amino-6-deoxyaldonic acids as monomers for the preparation of polyhydroxylated nylon 6. Tetrahedron: Asymmetry, 17, 1349–1354 (2006)ChaveriatL.StasikI.DemaillyG.BeaupèreD.The direct synthesis of 6-amino-6-deoxyaldonic acids as monomers for the preparation of polyhydroxylated nylon 6Tetrahedron: Asymmetry1713491354200610.1016/j.tetasy.2006.04.018Search in Google Scholar

Markowiak P., Ślizewska K.: The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. DOI: 10.1186/s13099-018-0250-0 (2018)MarkowiakP.ŚlizewskaK.The role of probiotics, prebiotics and synbiotics in animal nutritionGut Pathog.10.1186/s13099-018-0250-02018Open DOISearch in Google Scholar

Adamczak M., Bednarski W.: Enzymatyczna synteza galaktooligosacharydów i laktulozy w permeacie po ultrafiltracji serwatki. Żywność Nauk. Technol. Jakość. 6, 105–117 (2008)AdamczakM.BednarskiW.Enzymatyczna synteza galaktooligosacharydów i laktulozy w permeacie po ultrafiltracji serwatkiŻywność Nauk. Technol. Jakość.61051172008Search in Google Scholar

Drouault S., Anba J., Corthier G.: Streptococcus thermophilus is able to produce a β-galactosidase active during its transit in the digestive tract of germ-free mice. Appl. Environ. Microbiol. 68, 938–941 (2002)DrouaultS.AnbaJ.CorthierG.Streptococcus thermophilus is able to produce a β-galactosidase active during its transit in the digestive tract of germ-free miceAppl. Environ. Microbiol.68938941200210.1128/AEM.68.2.938-941.2002Search in Google Scholar

Henriksson G., Johansson G., Pettersson G.: A critical review of cellobiose dehydrogenases. J. Biotechnol. 78, 93–113 (2000)HenrikssonG.JohanssonG.PetterssonG.A critical review of cellobiose dehydrogenasesJ. Biotechnol.7893113200010.1016/S0168-1656(00)00206-6Search in Google Scholar

Wingate K.G., Stuthridge T., Mansfield S.D.: Colour remediation of pulp mill effluent using purified fungal cellobiose dehydrogenase: reaction optimisation and mechanism of degradation. Biotechnol. Bioeng. 90, 95–106 (2005)WingateK.G.StuthridgeT.MansfieldS.D.Colour remediation of pulp mill effluent using purified fungal cellobiose dehydrogenase: reaction optimisation and mechanism of degradationBiotechnol. Bioeng.9095106200510.1002/bit.2041915726583Search in Google Scholar

Khromonygina V.V., Saltykova A.I., Vasil’chenko L.G., Kozlov Y.P., Rabinovich M.L.: Degradation of the herbicide atrazine by the soil mycelial fungus INBI 2-26 (–), a producer of cellobiose dehydrogenase. Appl. Biochem. Microbiol. 40, 285–290 (2004)KhromonyginaV.V.SaltykovaA.I.Vasil’chenkoL.G.KozlovY.P.RabinovichM.L.Degradation of the herbicide atrazine by the soil mycelial fungus INBI 2-26 (–), a producer of cellobiose dehydrogenaseAppl. Biochem. Microbiol.40285290200410.1023/B:ABIM.0000025953.93099.a9Search in Google Scholar

Frommhagen M., Westphal A.H., van Berkel W.J.H., Kabel M.A.: Distinct substrate specificities and electron-donating systems of fungal lytic polysaccharide monooxygenases. Front. Microbiol. DOI: 10.3389/fmicb.2018.01080 (2018)FrommhagenM.WestphalA.H.van BerkelW.J.H.KabelM.A.Distinct substrate specificities and electron-donating systems of fungal lytic polysaccharide monooxygenasesFront. Microbiol.10.3389/fmicb.2018.010802018598739829896168Open DOISearch in Google Scholar

Solna R., Dock E., Christenson A., Winther-Nielsen M., Carlsson C., Emmneus J., et al. Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases. Anal. Chim. Acta. 528, 9–19 (2005)SolnaR.DockE.ChristensonA.Winther-NielsenM.CarlssonC.EmmneusJ.Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterasesAnal. Chim. Acta.528919200510.1016/j.aca.2004.10.022Search in Google Scholar

Ludwig R., Ortiz R., Schulz C., Harreither W., Sygmund C., Gorton L.: Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Anal. Bioanal. Chem. 405, 3637–3658 (2013)LudwigR.OrtizR.SchulzC.HarreitherW.SygmundC.GortonL.Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineeringAnal. Bioanal. Chem.40536373658201310.1007/s00216-012-6627-x360887323329127Search in Google Scholar

Heller A.: Electrical connection of enzyme redox centers to electrodes. J. Phys. Chem. 96, 3579–3587 (1992)HellerA.Electrical connection of enzyme redox centers to electrodesJ. Phys. Chem.9635793587199210.1021/j100188a007Search in Google Scholar

Bollella P., Gorton L., Antiochia R.: Direct electron transfer of deydrogenases for development of 3rd generation biosensors and enzymatic fuel cells. Sensors, DOI: 10.3390/s18051319 (2018)BollellaP.GortonL.AntiochiaR.Direct electron transfer of deydrogenases for development of 3rd generation biosensors and enzymatic fuel cellsSensors10.3390/s180513192018598219629695133Open DOISearch in Google Scholar

Wollenberger U., Lisdat F., Rose A., Streffer K.: Phenolic biosensors (w) Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, red. Bartlett P., John Wiley and Sons, DOI: 10.1002/9780470753842, 2008WollenbergerU.LisdatF.RoseA.StrefferK.Phenolic biosensors(w)Bioelectrochemistry: Fundamentals, Experimental Techniques and ApplicationsBartlettP.John Wiley and Sons10.1002/97804707538422008Open DOISearch in Google Scholar

del Valle M.: Electronic tongues employing electrochemical sensors. Electroanalysis, 22, 1539–1555 (2010)del ValleM.Electronic tongues employing electrochemical sensorsElectroanalysis2215391555201010.1002/elan.201000013Search in Google Scholar

Ciosek P., Wróblewski W.: Sensor arrays for liquid sensing – electronic tongue systems. Analyst, 132, 963–978 (2007)CiosekP.WróblewskiW.Sensor arrays for liquid sensing – electronic tongue systemsAnalyst132963978200710.1039/b705107g17893798Search in Google Scholar

Riul A., Dantas C.A.R., Miyazaki C.M., Oliveira O.N.: Recent advances in electronic tongues. Analyst, 135, 2481–2495 (2010)RiulA.DantasC.A.R.MiyazakiC.M.OliveiraO.N.Recent advances in electronic tonguesAnalyst13524812495201010.1039/c0an00292e20730141Search in Google Scholar

Cooney M.J., Svoboda V., Lau C., Martin G., Minteer S.D.: Enzyme catalysed biofuel cells. Energy. Environ. Sci. 1, 320–337 (2008)CooneyM.J.SvobodaV.LauC.MartinG.MinteerS.D.Enzyme catalysed biofuel cellsEnergy. Environ. Sci.1320337200810.1039/b809009bSearch in Google Scholar

Xiao X., Xia H., Wu R., Bai L., Yan L., Magner E., Cosnier S., Lojou E., Zhu Z., Liu A.: Tackling the challenges of enzymatic (bio) fuel cells. Chem. Rev. DOI: 10.1021/acs.chemrev.9b00115 (2019)XiaoX.XiaH.WuR.BaiL.YanL.MagnerE.CosnierS.LojouE.ZhuZ.LiuA.Tackling the challenges of enzymatic (bio) fuel cellsChem. Rev.10.1021/acs.chemrev.9b00115201931243999Open DOISearch in Google Scholar

Falk M., Andoralov V., Blum Z., Sotres J., Suyatin D.B., Ruzgas T., Arnebrant T., Shleev S.: Biofuel cell as a power source for electronic contact lenses. Biosens. Bioelectron. 37, 38–45 (2012)FalkM.AndoralovV.BlumZ.SotresJ.SuyatinD.B.RuzgasT.ArnebrantT.ShleevS.Biofuel cell as a power source for electronic contact lensesBiosens. Bioelectron.373845201210.1016/j.bios.2012.04.03022621980Search in Google Scholar

eISSN:
2545-3149
Languages:
English, Polish
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology