1. bookVolume 57 (2018): Issue 4 (January 2018)
Journal Details
First Published
01 Mar 1961
Publication timeframe
4 times per year
English, Polish
access type Open Access


Published Online: 26 Feb 2022
Volume & Issue: Volume 57 (2018) - Issue 4 (January 2018)
Page range: 398 - 402
Received: 01 Apr 2018
Accepted: 01 Sep 2018
Journal Details
First Published
01 Mar 1961
Publication timeframe
4 times per year
English, Polish

Acetic Acid Bacteria (AAB) have been known for many years, since humans first used them to produce vinegar. AAB serve as biocatalysts in industrial production of, inter alia, acetic acid, dihydroxyacetone, gluconic acid, bacterial cellulose or levan. Apart from the traditional industrial applications of wild strains of AAB, scientists strive to develop novel methods for the production of selected compounds using genetically-modified AAB. The application of such mutants in the industry entails both positive and negative aspects. Modifications of the bacterial genome have a significant effect upon the functioning of the entire cell. This review presents industrial applications of metabolites produced by both wild and genetically-modified strains of AAB.

1. Application of wild strains of AAB in the industry. 2. Application of genetically-modified strains of AAB in the industry. 3. Opinion on GMOs used in industry. 4. Summary

Key words

Słowa kluczowe

Akasaka N., Sakoda H., Hidese R., Ishii Y., Fujiwarab S.: An Efficient Method Using Gluconacetobacter europaeus To Reduce an Unfavorable Flavor Compound, Acetoin, in Rice Vinegar Production. Appl. Environ. Microbiol.79, 7334–7342 (2013)10.1128/AEM.02397-13Search in Google Scholar

Almeida J., Fávaro L.: Quirino B. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuel.5, 5–48 (2012)10.1186/1754-6834-5-48Search in Google Scholar

Battad-Bernardo E., McCrindle S.L., Couperwhite I., Neilan B.A.: Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. FEMS Microbiol. Lett.231, 253–260 (2004)10.1016/S0378-1097(04)00007-2Search in Google Scholar

Bawa A.S., Anilakumar K.R.: Genetically modified foods: safety, risks and public concerns-a review.J. Food. Sci. Technol.50, 1035–1046 (2013)10.1007/s13197-012-0899-1379124924426015Search in Google Scholar

Chawla P.R., Bajaj B.I., Survase S.A., Singhal R.S.: Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol.47, 107–124 (2009)Search in Google Scholar

De Roos J., De Vuyst L.: Acetic acid bacteria in fermented foods and beverages. Curr. Opinion Biotechnol.49, 115–119 (2018)10.1016/j.copbio.2017.08.00728863341Search in Google Scholar

Draelos M.D., Zoe D.: Self-Tanning Lotions: Are they a healthy way to achieve a tan?. Am. J. Clin. Dermatol.3, 317–318 (2002)10.2165/00128071-200203050-0000312069637Search in Google Scholar

Ehrenreich A.: The Genome of Acetic Acid Bacteria (in) Biology of Microorganisms on Grapes, in Must and in Wine, red. H. König, G. Unden, J. Fröhlich, Springer-Verlag, Berlin, 2009, p. 379–39410.1007/978-3-540-85463-0_21Search in Google Scholar

Esa F., Tasirin S.M., Rahman N.A.: Overview of bacterial cellulose production and application. Agric. Agric. Sci. Proc.2, 113– 119 (2014)10.1016/j.aaspro.2014.11.017Search in Google Scholar

Fukaya M.: Vinegar: Genetic Improvement of Acetobacter and Gluconobacter, Recombinant Microbes for Industrial and Agricultural Applications, red. Y. Murooka, T. Imanaka, Marcel Dekker, New York, 1994, p. 529–538.10.1201/9781003067191-32Search in Google Scholar

Guillamón J.M., Mas A.: Acetic Acid Bacteria (in) Biology of Microorganisms on Grapes, in Must and in Wine, red. H. König, G. Unden, J. Fröhlich. Springer-Verlag, Berlin, 2009, p. 31–4610.1007/978-3-540-85463-0_2Search in Google Scholar

Gullo M., La China S., Falcone P.M., Giudici P.: Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl. Microbiol. Biotechnol. DOI: 10.1007/ s00253-018-9164-5 (2018)Search in Google Scholar

Habe H., Fukuoka,T., Morita T., Kitamoto D., Yakushi T., Matsushita K., Sakaki K.: Disruption of Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in Gluconobacter oxydans. ISBA,74, 1391–1395 (2010)10.1271/bbb.10006820622460Search in Google Scholar

Habe H., Sato S., Fukuoka T., Kitamoto D., Sakaki, K.: Effect of Membrane-bound Aldehyde Dehydrogenase-encoding Gene Disruption on Glyceric Acid Production in Gluconobacter oxydans. J. Oleo. Scienc.63, 953–957 (2014)10.5650/jos.ess1411225174677Search in Google Scholar

Habe H., Shimada Y., Fukuoka T., Kitamoto D., Itagaki M., Watanabe K., Yanagishita H., Yakushi T., Matsushita K., Sakaki K.: Use of Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during Glyceric Acid Production from Glycerol. Biosci Biotechnol. Biochem. ISBA74, 2330–2332 (2010)10.1271/bbb.10040621071844Search in Google Scholar

Hallman W., Hebden W., Cuite C., Aquino H., Lang J.: Americans and GM food: knowledge, opinion& interest in 2004. New Brunswick (NJ): Rutgers, the State University of New Jersey, Food Policy Institute Nov Report No. RR-1104–007 (2004)Search in Google Scholar

Han L.: Genetically Modified Microorganisms (in) The GMO Handbook, ed. S.R. Parekh, Humana Press, Totowa, 200410.1007/978-1-59259-801-4_2Search in Google Scholar

Hermann M., Petermeier H., Vogel R.: Development of novel sourdoughs with in situ formed exopolysaccharides from acetic acid bacteria. Europ. Food Res. Technol. 241, 1–13 (2015)Search in Google Scholar

Hu S.Q., Gao Y.G., Tajima K., Sunagawa N., Zhou Y., Kawano S., Fujiwara T., Yoda T., Shimura D., Satoh Y., Munekata M., Tanaka I., Yao M.: Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc. Natl. Acad. Sci. USA, 107, 17957–17961 (2010)10.1073/pnas.1000601107296425620921370Search in Google Scholar

Jurkiewicz A.: Genetyczne modyfikacje organizmów – biotechnologiczny eksperyment na organizmach żywych. Med. Og. Nauk Zdr. 18, 236–242 (2012)Search in Google Scholar

Krajewski V., Simic P., Mouncey N.J., Bringer S., Sahm H., Bott M.: Metabolic Engineering of Gluconobacter oxydansfor Improved Growth Rate and Growth Yield on Glucose by Elimination of Gluconate Formation. Appl. Environ. Microbiol.76, 4369–4376 (2010)10.1128/AEM.03022-09289745620453146Search in Google Scholar

Krystynowicz A., Czaja W., Bielecki S.: Biosynthesis and possibilities using of bacterial cellulose. Żywn. Nauk. Technol. Ja. 3, 22–34 (1999)Search in Google Scholar

Lin P.S., Calvar I.L., Catchmark J.M., Liu J.R., Demirci A., Cheng K.C.: Biosynthesis, production and applications of bacterial cellulose. Cellulose,20, 2191–2219 (2013)10.1007/s10570-013-9994-3Search in Google Scholar

Lin X., Liu S., Xie G., Chen J., Li P., Chen J. Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydansby Combined Mutagenesis. J. Microbiol. Biotechnol.26, 1908– 1917 (2016)10.4014/jmb.1604.0401927876710Search in Google Scholar

Majewska E., Białecka-Florjańczyk E.: Zielona chemia w przemyśle spożywczym. Chem. Dyd. Ekol. Metrolog.1, 21–27 (2010)Search in Google Scholar

Mamlouk D., Gullo M.: Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Ind. J. Microbiol.53, 377–384 (2013)10.1007/s12088-013-0414-z377929024426139Search in Google Scholar

Marris C.: Public views on GMOs: deconstructing the myths. EMBO reports,2, 545–548 (2001)10.1093/embo-reports/kve142108395611463731Search in Google Scholar

Moosavi-Nasab M., Yousefi M.: Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J. Biotechnol. 9, 94–101 (2011)Search in Google Scholar

Saichana N., Matsushita K., Adachi O., Frébort I., Frébortová J.: Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv.33, 1260–1271 (2015)10.1016/j.biotechadv.2014.12.001Search in Google Scholar

Sanchez S., Demain A.L.: Metabolic regulation and overproduction of primary metabolites. Microbiol. Biotechnol.1, 283–319 (2008)10.1111/j.1751-7915.2007.00015.xSearch in Google Scholar

Santos S.M., Carbajo J.M., Gómez N., Quintana E., Ladero M., Sánchez A., Chinga-Carrasco G., Villar J.C.: Use of bacterial cellulose in degraded paper restoration Part II: application on real samples. J. Mat. Scienc.51, 1553–1561 (2016)10.1007/s10853-015-9477-zSearch in Google Scholar

Siso G.: The biotechnological utilization of cheese whey: a review. Biores. Technol.57, 1–11 (1996)10.1016/0960-8524(96)00036-3Search in Google Scholar

Slapšak N., Cleenwerck I., De Vos P., Trček J.: Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst. Appl. Microbiol.36, 17–21 (2013)10.1016/j.syapm.2012.11.00123273842Search in Google Scholar

Soemphol W., Toyama H., Moonmangmee D., Adachi O., Matsushita K.: L-Sorbose Reductase and Its Transcriptional Regulator Involved in L-Sorbose Utilization of Gluconobacter frateurii. J.Bacteriol.189, 4800–4808 (2007)10.1128/JB.01895-06191345817468249Search in Google Scholar

Stasiak-Różańska L., Błażejak S.: Production of dihydroxyacetone from an aqueous solution of glycerol in the reaction catalyzed by an immobilized cell preparation of acetic acid bacteria Gluconobacter oxydans ATCC 621. Eur. Food. Res. Technol.235, 1125–1132 (2012)10.1007/s00217-012-1846-0Search in Google Scholar

Ua-Arak T., Jakob F., Vogel R.F.: Characterization of growth and exopolysaccharide production of selected acetic acid bacteria in buckwheat sourdoughs. Int. J. Food Microbiol.239, 103–112 (2016)10.1016/j.ijfoodmicro.2016.04.00927118673Search in Google Scholar

Ua-Arak T., Jakob F., Vogel R.F.I.: Influence of levan-producing acetic acid bacteria on buckwheat-sourdough breads. Food Microbiol.65, 95–104 (2017)10.1016/j.fm.2017.02.00228400025Search in Google Scholar

Valera M.J., Torija M.J., Mas A., Mateo E.: Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl. Microbiol. Biotechnol.99, 1349–1361 (2015)10.1007/s00253-014-6198-125381910Search in Google Scholar

Veeravalli S.S., Mathews A.P.: Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol. Appl. Microbiol. Biotechnol. DOI 10.1007/s00253-018-9174-3 (2018)10.1007/s00253-018-9174-329946931Search in Google Scholar

Wang B., Shao Y., Chen F.: Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J. Microbiol. Biotechnol.31, 255–263 (2015)10.1007/s11274-015-1799-025575804Search in Google Scholar

Wunderlich S., Gatto K.A.: Consumer Perception of Genetically Modified Organisms and Sources of Information. ASN, 6, 842–851 (2015)10.3945/an.115.008870464241926567205Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo