Cite

Fig. 1

Physical model with coordinate system. δ1 represents the thickness of the boundary layer
Physical model with coordinate system. δ1 represents the thickness of the boundary layer

Fig. 2

Average square residual error versus order of approximation for: (I) Mn = 15, C = 0.001, λ1 = 0.3, γ = 1.0, and δ = –2.0, (II) Mn = 20, C = 0.01, λ1 = 0.2, γ = 0.5, and δ = –0.5, (III) Mn = 10, C = 0.1, λ1 = 0.1, γ = 0.1, and δ = –1.0.
Average square residual error versus order of approximation for: (I) Mn = 15, C = 0.001, λ1 = 0.3, γ = 1.0, and δ = –2.0, (II) Mn = 20, C = 0.01, λ1 = 0.2, γ = 0.5, and δ = –0.5, (III) Mn = 10, C = 0.1, λ1 = 0.1, γ = 0.1, and δ = –1.0.

Fig. 3

Similarity profile f(η) for various values of Mn and C. The direction of the arrows represents increasing Mn.
Similarity profile f(η) for various values of Mn and C. The direction of the arrows represents increasing Mn.

Fig. 4

Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of Mn and γ.
Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of Mn and γ.

Fig. 5

Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of Mn and λ1.
Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of Mn and λ1.

Fig. 6

Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of δ and C.
Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of δ and C.

Fig. 7

Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of λ1 and C.
Dimensionless velocity profile f′(η) and shear stress profile f″(η) for various values of λ1 and C.

Fig. 8

Dimensionless skin friction coefficient –f″(0) versus λ1 for different values of Mn.
Dimensionless skin friction coefficient –f″(0) versus λ1 for different values of Mn.

Fig. 9

Dimensionless skin friction coefficient –f″(0) versus γ for different values of C.
Dimensionless skin friction coefficient –f″(0) versus γ for different values of C.

Fig. 10

Dimensionless skin friction coefficient –f″(0) versus δ for different values of C.
Dimensionless skin friction coefficient –f″(0) versus δ for different values of C.

Values of dimensionless skin friction coefficient – f ″(0) for different values of Mn, C, λ1, γ, and δ.

λ1γδMnCf ″(0)E10
0.10.1–1.0100.00.38313670210.292981.5 × 10–9
0.10.39019234560.300551.5 × 10–9
0.20.39870056770.324511.3 × 10–8
200.00.25710082330.176783.4 × 10–7
0.10.26022391640.178303.1 × 10–7
0.20.26339718930.179822.9 × 10–7
0.10.1–2.0100.00.18470043070.293752.9 × 10–10
0.10.18808763450.300282.8 × 10–10
0.20.19156767740.326013.1 × 10–9
200.00.12671067470.180269.5 × 10–8
0.10.12819162970.181759.0 × 10–8
0.20.12969406880.183268.6 × 10–8
0.10.5-1.0100.00.33621989410.293181.1 × 10–9
0.10.34209690110.300251.1 × 10–9
0 20.34813567530.325291.0 × 10–8
200.00.23511516010.181264.2 × 10–7
0.10.23772475110.182724.0 × 10–7
0.20.24037060950.184203.9 × 10–7
0.20.1-1.0100.00.41803624930.293001.9 × 10–9
0 10.42639737380.300671.9 × 10–9
0.20.43503064540.324401.5 × 10–8
200.00.28048748620.176684.1 × 10–7
0.10.28389507900.178193.8 × 10–7
0.20.28735746040.179723.5 × 10–7

Comparison of skin friction coefficient for different values of C and λ1 in the absence of magnetic parameter Mn, first-order slip parameter γ, and second-order slip parameter δ.

Cλ1Vajravelu and Mohapatra [11]Present work
NumericalApproximateHAM- E10
000.46980.40810.46941.076981.8 × 10–4
0–0.40.37510.33980.37511.068851.5 × 10–6
0–0.80.14900.14110.14901.045242.5 × 10–8
–0.200.61900.55460.61901.087152.2 × 10–5
–0.2–0.40.45780.41980.45781.072851.7 × 10–7
–0.2–0.80.17570.16570.17561.049662.7 × 10–9
eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics