Open Access

A new computational algorithm for the solution of second order initial value problems in ordinary differential equations

   | Oct 03, 2018

Cite

Maximum absolute error in y(x) = sin2(x2$\begin{array}{} \displaystyle \frac{x}{2} \end{array}$) and y′(x) for Example 5.4.

MAEN
1282565121024204840968192
y.3083482(-1).2080867(-1).1396590(-1).9322166(-2).6191766(-2).4095947(-2).2701349(-2)
y.2283364(-2).1416236(-2).8000433(-3).4311204(-3).2279877(-3).1192688(-3).6163130(-4)

Maximum absolute error in y(x) = e(−20x)$\begin{array}{} \displaystyle e^{(\frac{-20}{x})} \end{array}$ and y′(x) for Example 5.1.

MAEN
64128256512102420484096
y.5621729(-3).2748708(-3).1313720(-3).5965512(-4).2474944(-4).1009797(-4).4115111(-5)
y.5267575(-6).1289518(-6).3187597(-7).7879862(-8).1913576(-8).5345364(-9).1852914(-9)

Maximum absolute error in y(x) = (1 + x)–1 and y′(x) for Example 5.3.

MAEN
1282565121024204840968192
y.1363998(-1).7091403(-2).3645122(-2).1860261(-2).9453296(-3).4789233(-3).2411603(-3)
y.6387859(-2).3583610(-2).1952946(-2).1042857(-2).5497336(-3).2868771(-3).1467168(-3)

Maximum absolute error in y(x) = (1 + x)–2 and y′(x) for Example 5.2.

MAEN
1282565121024204840968192
y.9100055(-2).5043587(-2).2747672(-2).1475068(-2).7822510(-3).4106779(-3).2136840(-3)
y.1660321(-1).8981451(-2).4802107(-2).2541303(-2).1330271(-2).6887614(-3).3566145(-3)
eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics