Open Access

Perfect phase-coded pulse trains generated by Talbot effect


Cite

J. J. Benedetto, I. Konstantinidis, and M. Rangaswamy, Phase-coded waveforms and their design. IEEE Signal Process. Mag. 26 (2009) 22–31. 10.1109/MSP.2008.930416BenedettoJ. J.KonstantinidisI.RangaswamyM.Phase-coded waveforms and their designIEEE Signal Process. Mag.262009223110.1109/MSP.2008.930416Open DOISearch in Google Scholar

X. Ouyang and J. Zhao, Orthogonal chirp division multiplexing for coherent optical fiber communications. J. Lightwave Technol. 34 (2016) 4376–4386. 10.1109/JLT.2016.2598575OuyangX.ZhaoJ.Orthogonal chirp division multiplexing for coherent optical fiber communicationsJ. Lightwave Technol.3420164376438610.1109/JLT.2016.2598575Open DOISearch in Google Scholar

Z. Feng, M. Tang, S. Fu, L. Deng, Q. Wu, R. Lin, R. Wang, P. Shum, and D. Liu, Performance-enhanced direct detection optical OFDM transmission with CAZAC equalization. IEEE Photon. Technol. Lett. 27 (2015) 1507–1510. 10.1109/LPT.2015.2426954FengZ.TangM.FuS.DengL.WuQ.LinR.WangR.ShumP.LiuD.Performance-enhanced direct detection optical OFDM transmission with CAZAC equalizationIEEE Photon. Technol. Lett.2720151507151010.1109/LPT.2015.2426954Open DOISearch in Google Scholar

A. Milewski, Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM J. Res. Develop. 27 (1983) 426–431. 10.1147/rd.275.0426MilewskiA.Periodic sequences with optimal properties for channel estimation and fast start-up equalizationIBM J. Res. Develop.27198342643110.1147/rd.275.0426Open DOISearch in Google Scholar

Y. Tsai, G. Zhang, D. Grieco, F. Ozluturk, and X. Wan, Cell search in 3GPP long term evolution systems. IEEE Veh. Technol. Mag. 2 (2007) 23–29. 10.1109/MVT.2007.912929TsaiY.ZhangG.GriecoD.OzluturkF.WanX.Cell search in 3GPP long term evolution systemsIEEE Veh. Technol. Mag.22007232910.1109/MVT.2007.912929Open DOISearch in Google Scholar

A. P. Clark, Z. C. Zhu, and J. K. Joshi, Fast start-up channel estimation. IEE Proc., part F 131 (1984) 375–382. 10.1049/ip-f-1:19840057ClarkA. P.ZhuZ. C.JoshiJ. K.Fast start-up channel estimationIEE Proc., part F131198437538210.1049/ip-f-1:19840057Open DOISearch in Google Scholar

M. R. Schroeder, Number theory in science and communication, Springer, 5th edition, 2009. 10.1007/978-3-540-85298-8SchroederM.R.Number theory in science and communicationSpringer5200910.1007/978-3-540-85298-8Open DOISearch in Google Scholar

K. Patorski, The self-imaging phenomenon and its applications. Prog. Optics 27 (1989) 1 – 108. 10.1016/S0079-6638(08)70084-2PatorskiK.The self-imaging phenomenon and its applicationsProg. Optics271989110810.1016/S0079-6638(08)70084-2Open DOISearch in Google Scholar

B. M. Popović, Generalized chirp-like polyphase sequences with optimum correlation properties. IEEE Trans. Inf. Theory 38 (1992) 1406–1409. 10.1109/18.144727PopovićB. M.Generalized chirp-like polyphase sequences with optimum correlation propertiesIEEE Trans. Inf. Theory3819921406140910.1109/18.144727Open DOISearch in Google Scholar

B. M. Popović, GCL polyphase sequences with minimum alphabets. Electron. Lett. 30 (1994) 106–107. 10.1049/el:19940208PopovićB. M.GCL polyphase sequences with minimum alphabetsElectron. Lett.30199410610710.1049/el:19940208Open DOISearch in Google Scholar

B. M. Popović, Efficient matched filter for the generalized chirp-like polyphase sequences. IEEE Trans. Aerosp. Electron. Syst. 30 (1994) 769–777. 10.1109/7.303746PopovićB. M.Efficient matched filter for the generalized chirp-like polyphase sequencesIEEE Trans. Aerosp. Electron. Syst.30199476977710.1109/7.303746Open DOISearch in Google Scholar

H. Führ and Z. Rzeszotnik, On biunimodular vectors for unitary matrices. Linear Algebra Appl. 484 (2015) 86–129. 10.1016/j.laa.2015.06.019FührH.RzeszotnikZ.On biunimodular vectors for unitary matricesLinear Algebra Appl.48420158612910.1016/j.laa.2015.06.019Open DOISearch in Google Scholar

D. Chu, Polyphase codes with good periodic correlation properties. IEEE Trans. Inf. Theory 18 (1972) 531–532. 10.1109/TIT.1972.1054840ChuD.Polyphase codes with good periodic correlation propertiesIEEE Trans. Inf. Theory18197253153210.1109/TIT.1972.1054840Open DOISearch in Google Scholar

R. Frank, Comments on ’Polyphase codes with good periodic correlation properties’ by Chu, David C. IEEE Trans. Inf. Theory 19 (1972) 244. 10.1109/TIT.1973.1054970FrankR.Comments on ’Polyphase codes with good periodic correlation properties’ by Chu, David CIEEE Trans. Inf. Theory19197224410.1109/TIT.1973.1054970Open DOISearch in Google Scholar

V. P. Ipatov, Spectra of multiphase sequences. Izvestiya VUZ. Radioelektronika (Radiolectronics and Communication Systems) 22 (1979) 80 –82.IpatovV.P.Spectra of multiphase sequencesIzvestiya VUZ. Radioelektronika (Radiolectronics and Communication Systems)2219798082Search in Google Scholar

E. M. Gabidulin, There are only finitely many perfect auto-correlation polyphase sequences of prime length. Proc. 1994 IEEE Int. Symp. Information Th., page 282, June/July 1994. 10.1109/ISIT.1994.394784GabidulinE.M.There are only finitely many perfect auto-correlation polyphase sequences of prime lengthProc. 1994 IEEE Int. Symp. Information Th.282June/July199410.1109/ISIT.1994.394784Open DOISearch in Google Scholar

F. F. Kretschmer and B. L. Lewis, Doppler properties of polyphase coded pulse compression waveforms. IEEE Trans. Aerospace Electron. Syst. 19 (1983) 521–531. 10.1109/TAES.1983.309340KretschmerF. F.LewisB.L.Doppler properties of polyphase coded pulse compression waveformsIEEE Trans. Aerospace Electron. Syst.19198352153110.1109/TAES.1983.309340Open DOISearch in Google Scholar

N. Zhang and S. W. Golomb, Polyphase sequence with low autocorrelations. IEEE Trans. Inf. Theory 39 (1993) 1085–1089. 10.1109/18.256535ZhangN.GolombS.W.Polyphase sequence with low autocorrelationsIEEE Trans. Inf. Theory3919931085108910.1109/18.256535Open DOISearch in Google Scholar

U. Haagerup, Cyclic p-roots of prime length p and related complex Hadamard matrices. arxiv: 0803.2629HaagerupU.Cyclic p-roots of prime length p and related complex Hadamard matricesarxiv: 0803.2629Search in Google Scholar

G. Björck and B. Saffari, New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries. C. R. Acad. Sci. Paris, Sér. 1 Math. 320 (1995) 319–324.BjörckG.SaffariB.New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entriesC. R. Acad. Sci. Paris Sér.1 Math3201995319324Search in Google Scholar

W. H. Mow, A new unified construction of perfect root-of-unity sequences. In Proc. IEEE 4th Int. Symp. Spread Spectrum Tech. Appl, vol. 3, p. 955–959, Sep. 1996. 10.1109/ISSSTA.1996.563445MowW.H.A new unified construction of perfect root-of-unity sequencesIn Proc. IEEE 4th Int. Symp. Spread Spectrum Tech. Appl3955959Sep199610.1109/ISSSTA.1996.563445Open DOISearch in Google Scholar

H. F. Talbot, Facts relating to optical science. IV. Philos. Mag. 9 (1836) 401–407. 10.1080/14786443608649032TalbotH.F.Facts relating to optical science. IVPhilos. Mag.9183640140710.1080/14786443608649032Open DOISearch in Google Scholar

Lord Rayleigh, On copying diffraction-gratings, and on some phenomena connected therewith. Philos. Mag. 11 (1881) 196–205. 10.1080/14786448108626995LordRayleighOn copying diffraction-gratings, and on some phenomena connected therewithPhilos. Mag.11188119620510.1080/14786448108626995Open DOISearch in Google Scholar

J. T. Winthrop and C. R. Worthington, Theory of Fresnel images. I. Plane periodic objects in monochromatic light. J. Opt. Soc. Am. 4 (1965) 373–381. 10.1364/JOSA.55.000373WinthropJ. T.WorthingtonC.R.Theory of Fresnel images. I. Plane periodic objects in monochromatic lightJ. Opt. Soc. Am.4196537338110.1364/JOSA.55.000373Open DOISearch in Google Scholar

W. D. Montgomery, Self-imaging objects of infinite aperture. J. Opt. Soc. Am. 57 (1967) 772–778. 10.1364/JOSA.57.000772MontgomeryW.D.Self-imaging objects of infinite apertureJ. Opt. Soc. Am.57196777277810.1364/JOSA.57.000772Open DOISearch in Google Scholar

J. Wen, Y. Zhang, and M. Xiao, The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photonics 5 (2013) 83–130. 10.1364/AOP.5.000083WenJ.ZhangY.XiaoM.The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum opticsAdv. Opt. Photonics520138313010.1364/AOP.5.000083Open DOISearch in Google Scholar

M. V. Berry and S. Klein, Integer, fractional and fractal Talbot effects. J. Mod. Opt. 43 (1996) 2139–2164. 10.1080/09500349608232876BerryM. V.KleinS.Integer, fractional and fractal Talbot effectsJ. Mod. Opt.4319962139216410.1080/09500349608232876Open DOISearch in Google Scholar

S. Matsutani and Y. Ônishi, Wave-particle complementarity and reciprocity of Gauss sums on Talbot effects. Found. Phys. Lett. 16 (2003) 325–341. 10.1023/A:1025309708569MatsutaniS.ÔnishiY.Wave-particle complementarity and reciprocity of Gauss sums on Talbot effectsFound. Phys. Lett.16200332534110.1023/A:1025309708569Open DOISearch in Google Scholar

H. C. Rosu, J. P. Treviño, H. Cabrera, and J. S. Murguía, Talbot effect for dispersion in linear optical fibers and a wavelet approach. Int. J. Mod. Phys. B 20 (2006) 1860–1876. 10.1142/S0217979206034364RosuH.C.TreviñoJ. P.CabreraH.MurguíaJ. S.Talbot effect for dispersion in linear optical fibers and a wavelet approachInt. J. Mod. Phys. B2020061860187610.1142/S0217979206034364Open DOISearch in Google Scholar

L. Romero-Cortés, H. Guillet de Chatellus, and J. Azaña, On the generality of the Talbot condition for inducing selfimaging effects on periodic objects. Opt. Lett. 41 (2016) 340–343. 10.1364/OL.41.000340. Erratum, Opt. Lett. 41 (2016) 5748. 10.1364/OL.41.005784Romero-CortésL.Guillet de ChatellusH.AzañaJ.On the generality of the Talbot condition for inducing selfimaging effects on periodic objects. Opt. Lett. 41, 201634034310.1364/OL.41.000340Erratum, Opt. Lett.412016574810.1364/OL.41.00578426766709Open DOISearch in Google Scholar

C. R. Fernández-Pousa, On the structure of quadratic Gauss sums in the Talbot effect. J. Opt. Soc. Am. A 34 (2017)732–742. 10.1364/JOSAA.34.000732Fernández-PousaC. R.On the structure of quadratic Gauss sums in the Talbot effectJ. Opt. Soc. Am. A.34201773274210.1364/JOSAA.34.00073228463317Open DOISearch in Google Scholar

C. R. Fernández-Pousa, A dispersion-balanced discrete Fourier transform of repetitive pulse sequences using temporal Talbot effect. Opt. Commun. 402 (2017) 97–103. 10.1016/j.optcom.2017.05.071Fernández-PousaC. R.A dispersion-balanced discrete Fourier transform of repetitive pulse sequences using temporal Talbot effectOpt. Commun.40220179710310.1016/j.optcom.2017.05.071Open DOISearch in Google Scholar

J. Azaña and M. A. Muriel, Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE J. Sel. Top. Quantum Electron. 7 (2001) 728–744. 10.1109/2944.974245AzañaJ.MurielM.A.Temporal self-imaging effects: theory and application for multiplying pulse repetition ratesIEEE J. Sel. Top. Quantum Electron.7200172874410.1109/2944.974245Open DOISearch in Google Scholar

H. Guillet de Chatellus, E. Lacot, W. Gastre, O. Jacquin, and O. Hugon, Theory of Talbot lasers. Phys. Rev. A. 88 (2013)033828. 10.1103/PhysRevA.88.033828Guillet de ChatellusH.LacotE.GastreW.JacquinO.HugonO.Theory of Talbot lasersPhys. Rev. A.88201303382810.1103/PhysRevA.88.033828Open DOISearch in Google Scholar

A. W. Lohmann, An array illuminator based on the Talbot effect. Optik (Stuttgart) 79 (1988) 41–45.LohmannA.W.An array illuminator based on the Talbot effectOptik (Stuttgart)791988414510.1364/AO.29.00433720577387Search in Google Scholar

R. Maram, J. van Howe, M. Li, and J. Azaña, Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect. Nat. Commun. 5 (2014) 5163. 10.1038/ncomms616325319207MaramR.van HoweJ.LiM.AzañaJ.Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effectNat. Commun.52014516310.1038/ncomms6163421896525319207Open DOISearch in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics