Open Access

Sedimentological and pore-scale characterisation of the Bockfließ Formation, Central Vienna Basin: implications for sealing potential

,  and   
Aug 21, 2025

Cite
Download Cover

Allen J.R.L., 1983. Studies in fluviatile sedimentation: Bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the brownstones (L. devonian), welsh borders. Sedimentary Geology 33/4, 237–293. https://doi.org/10.1016/0037-0738(83)90076-3. Search in Google Scholar

Bhuvanagiri S.R.V.P., Pichika S., Akkur R., Chaganti K., Madhusoodhanan R., Pusapati S.V., 2018. Integrated Approach for Modeling Coastal Lagoons: A Case for Chilka Lake, India, in: Srinivasa Rao, A.S.R., Rao, C.R. (Eds.), Integrated Population Biology and Modeling, Part A, vol. 39. Elsevier, 343–402. https://doi.org/10.1016/bs.host.2018.06.005. Search in Google Scholar

Bourg I.C., 2015. Sealing Shales versus Brittle Shales: A Sharp Threshold in the Material Properties and Energy Technology Uses of Fine- Grained Sedimentary Rocks. Environ. Sci. Technol. Lett. 2/10, 255–259. https://doi.org/10.1021/acs.estlett.5b00233. Search in Google Scholar

Bridge J.S., 2006. Fluvial Facies Models: Recent Developments, in: Posamentier, H.W. (Ed.), Facies models revisited. Society for Sedimentary Geology, Tulsa, Okla., 85–170. https://doi.org/10.2110/pec.06.84.0085. Search in Google Scholar

Busch A., Bertier P., Gensterblum Y., Rother G., Spiers C.J., Zhang M., Wentinck H.M., 2016. On sorption and swelling of CO2 in clays. Geomech. Geophys. Geo-energ. Geo-resour. 2/2, 111–130. https://doi.org/10.1007/s40948-016-0024-4. Search in Google Scholar

Clifton H.E., 2005. Coastal Sedimentary Facies, in: Schwartz, M.L. (Ed.), Encyclopedia of Coastal Science. Springer Netherlands, Dordrecht, 270–278. https://doi.org/10.1007/1-4020-3880-1_84. Search in Google Scholar

Daniel R.F., Kaldi J.G., 2009. Evaluating Seal Capacity of Cap Rocks and Intraformational Barriers for CO2 Containment, in: Grobe, M., Pashin, J.C., Dodge, R.L. (Eds.), Carbon Dioxide Sequestration in Geological Media-State of the Science, vol. 59. American Association of Petroleum Geologists, 335–345. https://doi.org/10.1306/St591317. Search in Google Scholar

Decker K., 1996. Miocene tectonics at the Alpine-Carpathian junction and the evolution of the Vienna Basin. Mitt Ges Geol Bergbaustud Osterr 41, 33–44. https://opac.geologie.ac.at/ais312/dokumente/Mitteilungen_Band41_A.pdf. Search in Google Scholar

Dickson J.A.D., 1965. A Modified Staining Technique for Carbonates in Thin Section. Nature 205/4971, 587. https://doi.org/10.1038/205587a0. Search in Google Scholar

Germay C., Lhomme T., Perneder L., 2023. High-resolution core data and machine learning schemes applied to rock facies classification. SP 527/1, 121–135. https://doi.org/10.1144/SP527-2021-193. Search in Google Scholar

Gilbert G.K., 1885. The topographic features of lake shores. US Government Printing Office. https://doi.org/10.1038/034269a0. Search in Google Scholar

Hamilton W., Wagner L., Wessely G., 2000. Oil and Gas in Austria. Mitt. Osterr. Geol. Ges. 92, 235–262. https://www.geologie.or.at/images/OEGG/geol-ges/mitteilungen/mitt-92.html. Search in Google Scholar

Haq B.U., Hardenbol J.A.N., Vail P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in: Wilgus C.K., Hastings B.S., Posamentier H., van Wagoner J., Ross C.A., St. Kendall C.G.C. (Eds.), Sea-Level Changes. SEPM (Society for Sedimentary Geology), 71–108. https://doi.org/10.2110/pec.88.01. Search in Google Scholar

Harzhauser M., Kranner M., Mandic O., Strauss P., Siedl W., Piller W.E., 2020. Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). Austrian Journal of Earth Sciences 113/2, 169–199. https://doi.org/10.17738/ajes.2020.0011. Search in Google Scholar

Harzhauser M., 2022. Vienna Basin, Korneuburg Basin. In: Piller W.E. (Ed.), Friebe J.G., Gross, M., Harzhauser M., Van Husen D., Koukal V., Krenmayr H.G., Krois P., Nebelsick J.H., Ortner H., Piller W.E., Reitner J.M., Roetzel R., Rogl F., Rupp C., Stingl V., Wagner L., Wagreich M., 2022. Stratigraphic Chart of Austria – Cenozoic. Abhandlungen der Geologische Bundesanstalt, 76, 163–181. https://www.inatura.at/forschung-online/piller_etal_2022_lithounits_cenozoic_austria_abh-gba_76.pdf. Search in Google Scholar

Harzhauser M., Kranner M., Siedl W., Conradi F., Piller W.E., 2024a. The Neogene of the Vienna Basin – a synthesis. In: Tari G. C., Kitchka A., Krezsek C., Lučić D., Markič M., Radivojević D., Sachsenhofer R.F., Šujan M. (eds) The Miocene Extensional Pannonian Superbasin, Volume 1: Regional Geology. Geological Society, London, Special Publications, 554. https://doi.org/10.1144/SP554-2023-168. Search in Google Scholar

Harzhauser M., Landau B., Mandic O., Neubauer T.A., 2024b. The Central Paratethys Sea-rise and demise of a Miocene European marine biodiversity hotspot. Scientific Reports, 14, 16288, 2024. https://doi.org/10.1038/s41598-024-67370-6. Search in Google Scholar

Hayes M., FitzGerald D., 2013. Origin, Evolution, and Classification of Tidal Inlets. Journal of Coastal Research, 69, 14–33. https://doi.org/10.2112/SI_69_3. Search in Google Scholar

Hewins M.R., Perry C.T., 2006. Bathymetric and Environmentally Influenced Patterns of Carbonate Sediment Accumulation in Three Contrasting Reef Settings, Danjugan Island, Philippines. Journal of Coastal Research 224, 812–824. https://doi.org/10.2112/04-0158.1. Search in Google Scholar

Holzel M., Decker K., Zamolyi A., Strauss P., Wagreich M., 2010. Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology 27/3, 666–681. https://doi.org/10.1016/j.marpetgeo.2009.10.005. Search in Google Scholar

Kaldi J.G., Atkinson C.D., 1997. Evaluating Seal Potential Example from the Talang Akar Formation, offshore Northwest Java, Indonesia. In: Surdam, R.C. (Ed.), Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611. Search in Google Scholar

Kaniewski D., Marriner N., Vacchi M., Camuffo D., Bivolaru A., Sarti G., Bertoni D., Diatta L., Markakis N., Martella A., Otto T., Luce F., Calaon D., Cottica D., Morhange C., 2024. Holocene Sea-level impacts on Venice Lagoon’s coastal wetlands. Global and Planetary Change 236, 104426. https://doi.org/10.1016/j.gloplacha.2024.104426. Search in Google Scholar

Kjerfve B., 1994. Chapter 1 Coastal Lagoons, in: Coastal Lagoon Processes, vol. 60. Elsevier, pp. 1–8. https://doi.org/10.1016/S0422-9894(08)70006-0. Search in Google Scholar

Kovač M., Barath I., Harzhauser M., Hlavaty I., Hudackova N., 2004. Miocene depositional systems and sequence stratigraphy of the Vienna Basin. CFS Courier Forschungsinstitut Senckenberg 246, 187–212. Search in Google Scholar

Lopes C.T., Savian J.F., Frigo E., Endrizzi G., Hartmann G.A., Santos N.O., Trindade R.I.F., Ivanoff M.D., Toldo E.E., Fauth G., Oliveira L.V., Bom M.H.H., 2022. Late Holocene paleosecular variation and relative paleointensity records from Lagoa dos Patos (southern Brazil). Physics of the Earth and Planetary Interiors 332, 106935. https://doi.org/10.1016/j.pepi.2022.106935. Search in Google Scholar

MacEachern J.A., Bann K.L., Gingras M.K., Zonneveld J.-P., Dashtgard S.E., Pemberton S.G., 2012. The Ichnofacies Paradigm, in: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments, vol. 64. Elsevier, 103–138. https://doi.org/10.1016/B978-0-444-53813-0.00004-6. Search in Google Scholar

Magri M., Bondavalli C., Bartoli M., Benelli S., Žilius M., Petkuviene J., Vybernaite- Lubiene I., Vaičiūtė D., Grinienė E., Zemlys P., Morkūnė R., Daunys D., Solovjova S., Bučas M., Gasiūnaitė Z.R., Baziukas-Razinkovas A., Bodini A., 2024. Temporal and spatial differences in nitrogen and phosphorus biogeochemistry and ecosystem functioning of a hypertrophic lagoon (Curonian Lagoon, SE Baltic Sea) revealed via Ecological Network Analysis. The Science of the total environment 921, 171070. https://doi.org/10.1016/j.scitotenv.2024.171070. Search in Google Scholar

McGee W.J., 1890. The southern extension of the Appomattox Formation. American Journal of Science 3/235, 15–41. https://doi.org/10.2475/ajs.s3-40.235.15. Search in Google Scholar

McRae S.G., 1972. Glauconite. Earth-Science Reviews 8/4, 397–440. https://doi.org/10.1016/0012-8252(72)90063-3. Search in Google Scholar

Miall A.D., 2006. The Geology of Fluvial Deposits. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03237-4. Search in Google Scholar

Morsilli M., Pomar L., 2012. Internal waves vs. surface storm waves: a review on the origin of hummocky cross‐stratification. Terra Nova 24/4, 273–282. https://doi.org/10.1111/j.1365-3121.2012.01070.x. Search in Google Scholar

Neubauer T.A., Harzhauser M., Kroh A., Georgopoulou E., Mandic O., 2015. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Science Reviews 143, 98–116. https://doi.org/10.1016/j.earscirev.2015.01.010. Search in Google Scholar

Papp A., Krobot W., Hladecek K., 1973. Zur Gliederung des Neogens im Zentralen Wiener Becken. Mitt. Ges. Geol. Berbaustud, Band 22, 191–199. https://opac.geologie.ac.at/ais312/dokumente/Mitteilungen_Band22_A.pdf. Search in Google Scholar

Pemberton S.G., MacEachern J.A., Dashtgard S.E., Bann K.L., Gingras M.K., Zonneveld J.-P., 2012. Shorefaces, in: Knaust D., Bromley R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments, vol. 64. Elsevier, 563–603. https://doi.org/10.1016/B978-0-444-53813-0.00019-8. Search in Google Scholar

Pereira Coutinho M.T., Brito A.C., Pereira P., Goncalves A.S., Moita M.T., 2012. A phytoplankton tool for water quality assessment in semi-enclosed coastal lagoons: Open vs closed regimes. Estuarine, Coastal and Shelf Science 110, 134–146. https://doi.org/10.1016/j.ecss.2012.04.007. Search in Google Scholar

Piller W.E., Harzhauser M., Mandic O., 2007. Miocene Central Paratethys stratigraphy – current status and future directions. strat 4/2–3, 151–168. https://doi.org/10.29041/strat.04.2.09. Search in Google Scholar

Popov S.V., Rogl F., Rozanov A.Y., Steininger F.F., Shcherba I.G., and Kovač M., 2004. Lithological-Paleogeographic maps of the Paratethys. 10 maps Late Eocene to Pliocene. Courier Forsch.-Inst. Senckenberg 250, 1–46. Search in Google Scholar

Pratt B.R., 1998. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sedimentary Geology 117/1–2, 1–10. https://doi.org/10.1016/S0037-0738(98)00023-2. Search in Google Scholar

Reineck H.-E., Singh I.B., 1973. Depositional Sedimentary Environments. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81498-3. Search in Google Scholar

Richard T., Dagrain F., Poyol E., Detournay E., 2012. Rock strength determination from scratch tests. Engineering Geology 147–148, 91–100. https://doi.org/10.1016/j.enggeo.2012.07.011. Search in Google Scholar

Rubio B., Lopez-Perez A.E., 2024. Exploring the Genesis of Glaucony and Verdine Facies for Paleoenvironmental Interpretation: A review. Sedimentary Geology. 461. 106579. https://doi.org/10.1016/j.sedgeo.2024.106579. Search in Google Scholar

Ruman A., Ćorić S., Halasova E., Harzhauser M., Hudačkova N., Jamrich M., Palzer-Khomenko M., Kranner M., Mandic O., Radionova E.P., Rybar S., Šimo V., Šujan M., Kovač M., 2021. The “Rzehakia beds” on the northern shelf of the Pannonian Basin: biostratigraphic and palaeoenvironmental implications. Facies 67/1. https://link.springer.com/article/10.1007/s10347-020-00609-6. Search in Google Scholar

Sachsenhofer R.F., Misch D., Rainer T., Rupprecht B.J., Siedl W., 2024. The Vienna Basin: petroleum systems, storage and geothermal potential. Geological Society, London, Special Publications, 555, SP555-2023-205. https://doi.org/10.1144/SP555-2023-205. Search in Google Scholar

Schultz L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. Professional Paper 391C. https://pubs.usgs.gov/publication/pp391C. Search in Google Scholar

Schultz O., 2005. Catalogus fossilium Austriae. Verl. der Osterr. Akad. der Wiss, Wien, 6911212 pp. https://doi.org/10.1553/0x000d1cf8. Search in Google Scholar

Siedl W., Strauss P., Sachsenhofer R.F., Harzhauser M., Kuffner T., Kranner M., 2020. Revised Badenian (middle Miocene) depositional systems of the Austrian Vienna Basin based on a new sequence stratigraphic framework. Austrian Journal of Earth Sciences 113/1, 87–110. https://doi.org/10.17738/ajes.2020.0006. Search in Google Scholar

Skerbisch L., Misch D., Drews M., 2023. Regional mudstone compaction trends in the Vienna Basin: top seal assessment and implications for uplift history. Int J Earth Sci (Geol Rundsch) 112, 1901–1921. https://doi.org/10.1007/s00531-023-02331-4. Search in Google Scholar

Strauss P., Harzhauser M., Hinsch R., Wagreich M., 2006. Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geologica Carpathica 57. http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-33746562405&partner@&rel=R5.0.4. Search in Google Scholar

Surdam R.C., 1997. Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611. Search in Google Scholar

Talman S.G., Keough M.J., 2001. Impact of an exotic clam, Corbula gibba, on the commercial scallop Pecten fumatus in Port Phillip Bay, south-east Australia: evidence of resource-restricted growth in a subtidal environment. Marine Ecology Progress Series 221, 135–143. https://doi.org/10.3354/meps221135. Search in Google Scholar

Thomeer J., Murphy D., 2000. Capillarity in rocks. Shell/OGCI PetroSkills. Tucker M.E., Jones S., 2023. Sedimentary petrology. Wiley, Hoboken, NJ, 426 pp. ISBN: 9781118786499 Search in Google Scholar

Vidal L., Rodriguez-Gallego L., Conde D., Martinez-Lopez W., Bonilla S., 2007. Biomass of autotrophic picoplankton in subtropical coastal lagoons: Is it relevant? Limnetica 26/2, 441–452. https://doi.org/10.23818/limn.26.37. Search in Google Scholar

Worden R.H., 2023. Value of core for reservoir and top-seal analysis for carbon capture and storage projects. Geological Society, London, Special Publications, Volume 527, 365–385. https://doi.org/10.1144/SP527-2022-38. Search in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Geosciences, Geophysics, Geology and Mineralogy, Geosciences, other