[
Allen J.R.L., 1983. Studies in fluviatile sedimentation: Bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the brownstones (L. devonian), welsh borders. Sedimentary Geology 33/4, 237–293. https://doi.org/10.1016/0037-0738(83)90076-3.
]Search in Google Scholar
[
Bhuvanagiri S.R.V.P., Pichika S., Akkur R., Chaganti K., Madhusoodhanan R., Pusapati S.V., 2018. Integrated Approach for Modeling Coastal Lagoons: A Case for Chilka Lake, India, in: Srinivasa Rao, A.S.R., Rao, C.R. (Eds.), Integrated Population Biology and Modeling, Part A, vol. 39. Elsevier, 343–402. https://doi.org/10.1016/bs.host.2018.06.005.
]Search in Google Scholar
[
Bourg I.C., 2015. Sealing Shales versus Brittle Shales: A Sharp Threshold in the Material Properties and Energy Technology Uses of Fine- Grained Sedimentary Rocks. Environ. Sci. Technol. Lett. 2/10, 255–259. https://doi.org/10.1021/acs.estlett.5b00233.
]Search in Google Scholar
[
Bridge J.S., 2006. Fluvial Facies Models: Recent Developments, in: Posamentier, H.W. (Ed.), Facies models revisited. Society for Sedimentary Geology, Tulsa, Okla., 85–170. https://doi.org/10.2110/pec.06.84.0085.
]Search in Google Scholar
[
Busch A., Bertier P., Gensterblum Y., Rother G., Spiers C.J., Zhang M., Wentinck H.M., 2016. On sorption and swelling of CO2 in clays. Geomech. Geophys. Geo-energ. Geo-resour. 2/2, 111–130. https://doi.org/10.1007/s40948-016-0024-4.
]Search in Google Scholar
[
Clifton H.E., 2005. Coastal Sedimentary Facies, in: Schwartz, M.L. (Ed.), Encyclopedia of Coastal Science. Springer Netherlands, Dordrecht, 270–278. https://doi.org/10.1007/1-4020-3880-1_84.
]Search in Google Scholar
[
Daniel R.F., Kaldi J.G., 2009. Evaluating Seal Capacity of Cap Rocks and Intraformational Barriers for CO2 Containment, in: Grobe, M., Pashin, J.C., Dodge, R.L. (Eds.), Carbon Dioxide Sequestration in Geological Media-State of the Science, vol. 59. American Association of Petroleum Geologists, 335–345. https://doi.org/10.1306/St591317.
]Search in Google Scholar
[
Decker K., 1996. Miocene tectonics at the Alpine-Carpathian junction and the evolution of the Vienna Basin. Mitt Ges Geol Bergbaustud Osterr 41, 33–44. https://opac.geologie.ac.at/ais312/dokumente/Mitteilungen_Band41_A.pdf.
]Search in Google Scholar
[
Dickson J.A.D., 1965. A Modified Staining Technique for Carbonates in Thin Section. Nature 205/4971, 587. https://doi.org/10.1038/205587a0.
]Search in Google Scholar
[
Germay C., Lhomme T., Perneder L., 2023. High-resolution core data and machine learning schemes applied to rock facies classification. SP 527/1, 121–135. https://doi.org/10.1144/SP527-2021-193.
]Search in Google Scholar
[
Gilbert G.K., 1885. The topographic features of lake shores. US Government Printing Office. https://doi.org/10.1038/034269a0.
]Search in Google Scholar
[
Hamilton W., Wagner L., Wessely G., 2000. Oil and Gas in Austria. Mitt. Osterr. Geol. Ges. 92, 235–262. https://www.geologie.or.at/images/OEGG/geol-ges/mitteilungen/mitt-92.html.
]Search in Google Scholar
[
Haq B.U., Hardenbol J.A.N., Vail P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in: Wilgus C.K., Hastings B.S., Posamentier H., van Wagoner J., Ross C.A., St. Kendall C.G.C. (Eds.), Sea-Level Changes. SEPM (Society for Sedimentary Geology), 71–108. https://doi.org/10.2110/pec.88.01.
]Search in Google Scholar
[
Harzhauser M., Kranner M., Mandic O., Strauss P., Siedl W., Piller W.E., 2020. Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). Austrian Journal of Earth Sciences 113/2, 169–199. https://doi.org/10.17738/ajes.2020.0011.
]Search in Google Scholar
[
Harzhauser M., 2022. Vienna Basin, Korneuburg Basin. In: Piller W.E. (Ed.), Friebe J.G., Gross, M., Harzhauser M., Van Husen D., Koukal V., Krenmayr H.G., Krois P., Nebelsick J.H., Ortner H., Piller W.E., Reitner J.M., Roetzel R., Rogl F., Rupp C., Stingl V., Wagner L., Wagreich M., 2022. Stratigraphic Chart of Austria – Cenozoic. Abhandlungen der Geologische Bundesanstalt, 76, 163–181. https://www.inatura.at/forschung-online/piller_etal_2022_lithounits_cenozoic_austria_abh-gba_76.pdf.
]Search in Google Scholar
[
Harzhauser M., Kranner M., Siedl W., Conradi F., Piller W.E., 2024a. The Neogene of the Vienna Basin – a synthesis. In: Tari G. C., Kitchka A., Krezsek C., Lučić D., Markič M., Radivojević D., Sachsenhofer R.F., Šujan M. (eds) The Miocene Extensional Pannonian Superbasin, Volume 1: Regional Geology. Geological Society, London, Special Publications, 554. https://doi.org/10.1144/SP554-2023-168.
]Search in Google Scholar
[
Harzhauser M., Landau B., Mandic O., Neubauer T.A., 2024b. The Central Paratethys Sea-rise and demise of a Miocene European marine biodiversity hotspot. Scientific Reports, 14, 16288, 2024. https://doi.org/10.1038/s41598-024-67370-6.
]Search in Google Scholar
[
Hayes M., FitzGerald D., 2013. Origin, Evolution, and Classification of Tidal Inlets. Journal of Coastal Research, 69, 14–33. https://doi.org/10.2112/SI_69_3.
]Search in Google Scholar
[
Hewins M.R., Perry C.T., 2006. Bathymetric and Environmentally Influenced Patterns of Carbonate Sediment Accumulation in Three Contrasting Reef Settings, Danjugan Island, Philippines. Journal of Coastal Research 224, 812–824. https://doi.org/10.2112/04-0158.1.
]Search in Google Scholar
[
Holzel M., Decker K., Zamolyi A., Strauss P., Wagreich M., 2010. Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology 27/3, 666–681. https://doi.org/10.1016/j.marpetgeo.2009.10.005.
]Search in Google Scholar
[
Kaldi J.G., Atkinson C.D., 1997. Evaluating Seal Potential Example from the Talang Akar Formation, offshore Northwest Java, Indonesia. In: Surdam, R.C. (Ed.), Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611.
]Search in Google Scholar
[
Kaniewski D., Marriner N., Vacchi M., Camuffo D., Bivolaru A., Sarti G., Bertoni D., Diatta L., Markakis N., Martella A., Otto T., Luce F., Calaon D., Cottica D., Morhange C., 2024. Holocene Sea-level impacts on Venice Lagoon’s coastal wetlands. Global and Planetary Change 236, 104426. https://doi.org/10.1016/j.gloplacha.2024.104426.
]Search in Google Scholar
[
Kjerfve B., 1994. Chapter 1 Coastal Lagoons, in: Coastal Lagoon Processes, vol. 60. Elsevier, pp. 1–8. https://doi.org/10.1016/S0422-9894(08)70006-0.
]Search in Google Scholar
[
Kovač M., Barath I., Harzhauser M., Hlavaty I., Hudackova N., 2004. Miocene depositional systems and sequence stratigraphy of the Vienna Basin. CFS Courier Forschungsinstitut Senckenberg 246, 187–212.
]Search in Google Scholar
[
Lopes C.T., Savian J.F., Frigo E., Endrizzi G., Hartmann G.A., Santos N.O., Trindade R.I.F., Ivanoff M.D., Toldo E.E., Fauth G., Oliveira L.V., Bom M.H.H., 2022. Late Holocene paleosecular variation and relative paleointensity records from Lagoa dos Patos (southern Brazil). Physics of the Earth and Planetary Interiors 332, 106935. https://doi.org/10.1016/j.pepi.2022.106935.
]Search in Google Scholar
[
MacEachern J.A., Bann K.L., Gingras M.K., Zonneveld J.-P., Dashtgard S.E., Pemberton S.G., 2012. The Ichnofacies Paradigm, in: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments, vol. 64. Elsevier, 103–138. https://doi.org/10.1016/B978-0-444-53813-0.00004-6.
]Search in Google Scholar
[
Magri M., Bondavalli C., Bartoli M., Benelli S., Žilius M., Petkuviene J., Vybernaite- Lubiene I., Vaičiūtė D., Grinienė E., Zemlys P., Morkūnė R., Daunys D., Solovjova S., Bučas M., Gasiūnaitė Z.R., Baziukas-Razinkovas A., Bodini A., 2024. Temporal and spatial differences in nitrogen and phosphorus biogeochemistry and ecosystem functioning of a hypertrophic lagoon (Curonian Lagoon, SE Baltic Sea) revealed via Ecological Network Analysis. The Science of the total environment 921, 171070. https://doi.org/10.1016/j.scitotenv.2024.171070.
]Search in Google Scholar
[
McGee W.J., 1890. The southern extension of the Appomattox Formation. American Journal of Science 3/235, 15–41. https://doi.org/10.2475/ajs.s3-40.235.15.
]Search in Google Scholar
[
McRae S.G., 1972. Glauconite. Earth-Science Reviews 8/4, 397–440. https://doi.org/10.1016/0012-8252(72)90063-3.
]Search in Google Scholar
[
Miall A.D., 2006. The Geology of Fluvial Deposits. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03237-4.
]Search in Google Scholar
[
Morsilli M., Pomar L., 2012. Internal waves vs. surface storm waves: a review on the origin of hummocky cross‐stratification. Terra Nova 24/4, 273–282. https://doi.org/10.1111/j.1365-3121.2012.01070.x.
]Search in Google Scholar
[
Neubauer T.A., Harzhauser M., Kroh A., Georgopoulou E., Mandic O., 2015. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Science Reviews 143, 98–116. https://doi.org/10.1016/j.earscirev.2015.01.010.
]Search in Google Scholar
[
Papp A., Krobot W., Hladecek K., 1973. Zur Gliederung des Neogens im Zentralen Wiener Becken. Mitt. Ges. Geol. Berbaustud, Band 22, 191–199. https://opac.geologie.ac.at/ais312/dokumente/Mitteilungen_Band22_A.pdf.
]Search in Google Scholar
[
Pemberton S.G., MacEachern J.A., Dashtgard S.E., Bann K.L., Gingras M.K., Zonneveld J.-P., 2012. Shorefaces, in: Knaust D., Bromley R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments, vol. 64. Elsevier, 563–603. https://doi.org/10.1016/B978-0-444-53813-0.00019-8.
]Search in Google Scholar
[
Pereira Coutinho M.T., Brito A.C., Pereira P., Goncalves A.S., Moita M.T., 2012. A phytoplankton tool for water quality assessment in semi-enclosed coastal lagoons: Open vs closed regimes. Estuarine, Coastal and Shelf Science 110, 134–146. https://doi.org/10.1016/j.ecss.2012.04.007.
]Search in Google Scholar
[
Piller W.E., Harzhauser M., Mandic O., 2007. Miocene Central Paratethys stratigraphy – current status and future directions. strat 4/2–3, 151–168. https://doi.org/10.29041/strat.04.2.09.
]Search in Google Scholar
[
Popov S.V., Rogl F., Rozanov A.Y., Steininger F.F., Shcherba I.G., and Kovač M., 2004. Lithological-Paleogeographic maps of the Paratethys. 10 maps Late Eocene to Pliocene. Courier Forsch.-Inst. Senckenberg 250, 1–46.
]Search in Google Scholar
[
Pratt B.R., 1998. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sedimentary Geology 117/1–2, 1–10. https://doi.org/10.1016/S0037-0738(98)00023-2.
]Search in Google Scholar
[
Reineck H.-E., Singh I.B., 1973. Depositional Sedimentary Environments. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81498-3.
]Search in Google Scholar
[
Richard T., Dagrain F., Poyol E., Detournay E., 2012. Rock strength determination from scratch tests. Engineering Geology 147–148, 91–100. https://doi.org/10.1016/j.enggeo.2012.07.011.
]Search in Google Scholar
[
Rubio B., Lopez-Perez A.E., 2024. Exploring the Genesis of Glaucony and Verdine Facies for Paleoenvironmental Interpretation: A review. Sedimentary Geology. 461. 106579. https://doi.org/10.1016/j.sedgeo.2024.106579.
]Search in Google Scholar
[
Ruman A., Ćorić S., Halasova E., Harzhauser M., Hudačkova N., Jamrich M., Palzer-Khomenko M., Kranner M., Mandic O., Radionova E.P., Rybar S., Šimo V., Šujan M., Kovač M., 2021. The “Rzehakia beds” on the northern shelf of the Pannonian Basin: biostratigraphic and palaeoenvironmental implications. Facies 67/1. https://link.springer.com/article/10.1007/s10347-020-00609-6.
]Search in Google Scholar
[
Sachsenhofer R.F., Misch D., Rainer T., Rupprecht B.J., Siedl W., 2024. The Vienna Basin: petroleum systems, storage and geothermal potential. Geological Society, London, Special Publications, 555, SP555-2023-205. https://doi.org/10.1144/SP555-2023-205.
]Search in Google Scholar
[
Schultz L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. Professional Paper 391C. https://pubs.usgs.gov/publication/pp391C.
]Search in Google Scholar
[
Schultz O., 2005. Catalogus fossilium Austriae. Verl. der Osterr. Akad. der Wiss, Wien, 6911212 pp. https://doi.org/10.1553/0x000d1cf8.
]Search in Google Scholar
[
Siedl W., Strauss P., Sachsenhofer R.F., Harzhauser M., Kuffner T., Kranner M., 2020. Revised Badenian (middle Miocene) depositional systems of the Austrian Vienna Basin based on a new sequence stratigraphic framework. Austrian Journal of Earth Sciences 113/1, 87–110. https://doi.org/10.17738/ajes.2020.0006.
]Search in Google Scholar
[
Skerbisch L., Misch D., Drews M., 2023. Regional mudstone compaction trends in the Vienna Basin: top seal assessment and implications for uplift history. Int J Earth Sci (Geol Rundsch) 112, 1901–1921. https://doi.org/10.1007/s00531-023-02331-4.
]Search in Google Scholar
[
Strauss P., Harzhauser M., Hinsch R., Wagreich M., 2006. Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geologica Carpathica 57. http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-33746562405&partner@&rel=R5.0.4.
]Search in Google Scholar
[
Surdam R.C., 1997. Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611.
]Search in Google Scholar
[
Talman S.G., Keough M.J., 2001. Impact of an exotic clam, Corbula gibba, on the commercial scallop Pecten fumatus in Port Phillip Bay, south-east Australia: evidence of resource-restricted growth in a subtidal environment. Marine Ecology Progress Series 221, 135–143. https://doi.org/10.3354/meps221135.
]Search in Google Scholar
[
Thomeer J., Murphy D., 2000. Capillarity in rocks. Shell/OGCI PetroSkills. Tucker M.E., Jones S., 2023. Sedimentary petrology. Wiley, Hoboken, NJ, 426 pp. ISBN: 9781118786499
]Search in Google Scholar
[
Vidal L., Rodriguez-Gallego L., Conde D., Martinez-Lopez W., Bonilla S., 2007. Biomass of autotrophic picoplankton in subtropical coastal lagoons: Is it relevant? Limnetica 26/2, 441–452. https://doi.org/10.23818/limn.26.37.
]Search in Google Scholar
[
Worden R.H., 2023. Value of core for reservoir and top-seal analysis for carbon capture and storage projects. Geological Society, London, Special Publications, Volume 527, 365–385. https://doi.org/10.1144/SP527-2022-38.
]Search in Google Scholar