[Aggarwal P.K., Romatschke U., Araguas-Araguas L., Belachew D., Long-staffe F.J., Berg P., Schumacher C., Funk A. 2016. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 9, 624–629. https://doi.org/10.1038/ngeo2739]Search in Google Scholar
[Benischke R., Brielmann H., Dalla-Via A., Goldbrunner J., Grath J., Harum T., Humer F., Kralik M., Leis A., Philippitsch R., Rank D., Reszler C., Schott K., Wemhöhner U., Wyhlidal S., 2018. Isotopenzusammensetzung in natürlichen Wässern in Österreich – Grundlagen und Anwendungsbeispiele zur Wasser-Isotopenkarte Österreichs 1:500 000, 154, Bundesministerium für Nachhaltigkeit und Tourismus, Vienna. https://info.bml.gv.at/dam/jcr:eba9348f-cefb-465f-94abfbbe444c9046/Wasser-Isotopenkarte_Bericht_final.pdf]Search in Google Scholar
[BGBl. (Bundesgesetzblatt), 2006. Ordinance about the monitoring of the water Quality of the Austrian Federal Ministry of Sustainability and Tourism (BMNT), offices of provincial governments (Gewässerzustandsüberwachungsverordnung-GZÜV). II. Nr. 479, Vienna.]Search in Google Scholar
[Bowen G.J., Good S.P., 2015. Incorporating water isoscapes in hydro-logical and water resource investigations. WIREs Water, 2, 107–119. https://doi.org/10.1002/wat2.1069]Search in Google Scholar
[Bowen G.J., Putman A., Brooks J.R., Bowling D.R., Oerter E.J., Good S.P., 2018. Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187, 1025–1039. https://doi.org/10.1007/s00442-018-4192-5]Search in Google Scholar
[Di Cecco G.J., Gouhier T.C., 2018. Increased spatial and temporal autocorrelation of temperature under climate change. Scientific Reports, 8, 14850. https://doi.org/10.1038/s41598-018-33217-0]Search in Google Scholar
[Cervi F., Borgatti L., Dreossi G., Marcato G., Michelini M., Stenni B., 2017. Isotopic features of precipitation and groundwater from the Eastern Alps of Italy: Results from the Mt. Tinisa hydrogeological system. Environmental Earth Sciences, 76, 410. https://doi.org/10.1007/s12665-017-6748-9]Search in Google Scholar
[Coplen T.B., 1994. Reporting of stable hydrogen, carbon and oxygen isotopic abundances. Pure and Applied Chemistry, 66, 273–276. https://doi.org/10.1351/pac199466020273]Search in Google Scholar
[Coplen T.B., Herczeg A.L., Barnes C., 2000. Isotope Engineering - Using Stable Isotopes of the Water Molecule to Solve Practical Problems. In: Cook P.G., Herczeg A.L. (eds.), Environmental Tracers in Sub-surface Hydrology. Springer US, Boston, MA, 79–110. https://doi.org/10.1007/978-1-4615-4557-6_3]Search in Google Scholar
[Coplen T.B., Qi H., 2009. Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples. Isotopes in Environmental and Health Studies, 45, 126–134. https://doi.org/10.1080/10256010902871952]Search in Google Scholar
[Dansgaard W., 1964. Stable isotopes in precipitation. Tellus, 16, 436–468. https://doi.org/10.3402/tellusa.v16i4.8993]Search in Google Scholar
[Erdélyi D., Kern Z., Hatvan I.G., Vreča P., Žagar K., Huneau F., Perșoiu A., Leuenberger M., Lojen S., Kracht O., Harjung A., Rossi P., Mustonen K.-R., Welker J., 2024a. Machine learning analysis for predicting spatial distribution and key influencers of stable isotope patterns in European precipitation. EGU General Assembly. Vienna, Austria, 14–19 April 2024, EGU24-15660. https://doi.org/10.5194/egusphereegu24-15660]Search in Google Scholar
[Erdélyi D., Kern Z., Hatvan I.G., Vreča P., Žagar K., Huneau F., Perșoiu A., Leuenberger M., Lojen S., Kracht O., Harjung A., Rossi P., Mustonen K.-R., Welker J., 2024b. Predicting the spatial distribution of stable isotopes in monthly precipitation across Europe using a machine learning approach. 12th International Geostatistics Congress, Geo-statistics Congress, Ponta Delgada, Portugal.]Search in Google Scholar
[Erdélyi D., Kern Z., Nyitrai T., Hatvani I.G., 2023. Predicting the spatial distribution of stable isotopes in precipitation using a machine learning approach: A comparative assessment of random forest variants. GEM - International Journal on Geomathematics, 14, 14. https://doi.org/10.1007/s13137-023-00224-x]Search in Google Scholar
[Eshel A., Alpert P., Messer H., 2022. Estimating the Parameters of the Spatial Autocorrelation of Rainfall Fields by Measurements From Commercial Microwave Links IEEE Transactions on Geo-science and Remote Sensing 60, 1–11. https://doi.org/10.1109/TGRS.2022.3165309]Search in Google Scholar
[Fórizs I., 2003. Isotopes as natural tracers in the water cycle: Examples from the Carpathian Basin. Studia UBB Physica, 48, 69–77.]Search in Google Scholar
[Fórizs I., 2005. Processes behind the isotopic water line: water cycle and climate Studia UBB Physica, 50, 138–146.]Search in Google Scholar
[Gat J.R., 2005. Some classical concepts of isotope hydrology. In: Aggarwal P.K., Gat J.R., Froehlich K.F. (eds.), Isotopes in the Water Cycle: Past, Present and Future of a Developing Science. Springer Netherlands, Dordrecht, 127–137. https://doi.org/10.1007/1-4020-3023-1_10]Search in Google Scholar
[Hager B., Foelsche U., 2015. Stable isotope composition of precipitation in Austria. Austrian Journal of Earth Sciences, 108, 2–14. https://doi.org/10.17738/ajes.2015.0012]Search in Google Scholar
[Hatvani I.G., Szatmári G., Kern Z., Erdélyi D., Vreča P., Kanduč T., Czuppon Gy., Lojen S., Kohán B., 2021. Geostatistical evaluation of the design of the precipitation stable isotope monitoring network for Slovenia and Hungary Environment International, 146, 106263. https://doi.org/10.1016/j.envint.2020.106263]Search in Google Scholar
[IAEA 1992. Statistical treatment of data on environmental isotopes in precipitation. Technical Report Series, Vol. 331. International Atomic Energy Agency, Vienna.]Search in Google Scholar
[IAEA 2023. Global Network of Isotopes in Precipitation. The GNIP Database. https://nucleus.iaea.org/wiser/explore/]Search in Google Scholar
[Kern Z., Hatvani I.G., Czuppon G., Fórizs I., Erdélyi D., Kanduč T., Palcsu L., Vreča P., 2020. Isotopic ‘Altitude’ and ‘Continental’ effects in modern precipitation across the Adriatic-Pannonian region. Water, 12, 1797. https://doi.org/10.3390/w12061797]Search in Google Scholar
[Knorr E.M, Ng R.T, Tucakov V., 2000. Distance-based outliers: algorithms and applications The VLDB Journal 8, 237–253. https://doi.org/10.1007/s007780050006]Search in Google Scholar
[Kralik M., Papesch W., Stichler W., 2003. Austrian Network of Isotopes in Precipitation (ANIP): Quality assurance and climatological phenomenon in one of the oldest and densest networks in the world. Isotope Hydrology and Integrated Water Resources Management. 146–149.]Search in Google Scholar
[Kralik M., Terzer S., Wyhlidal S., 2015. Vienna GNIP-ANIP-station: a unique station with 40 years of dual measurements. In International Symposium on Isotope Hydrology, 104–106.]Search in Google Scholar
[Landwehr J., Coplen T., 2006. Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In: International conference on isotopes in environmental studies, Monaco, vol 56. IAEA Vienna, Vienna, Austria, 132–135.]Search in Google Scholar
[Liu J., Song X., Yuan G., Sun X., Yang L., 2014. Stable isotopic compositions of precipitation in China Tellus B: Chemical and Physical Meteorology, 66, 22567. https://doi.org/10.3402/tellusb.v66.22567]Search in Google Scholar
[Mellat M., Bailey H., Mustonen K.-R., Marttila H., Klein E.S., Gribanov K., Bret-Harte M.S., Chupakov A.V., Divine D.V., Else B., Filippov I., Hyöky V., Jones S., Kirpotin S.N., Kroon A., Markussen H.T., Nielsen M., Olsen M., Paavola R., Pokrovsky O.S., Prokushkin A., Rasch M., Raundrup K., Suominen O., Syvänperä I., Vignisson S.R., Zarov E., Welker J.M., 2021. Hydroclimatic controls on the isotopic (δ18O, δ2H, d-excess) traits of pan-Arctic summer rainfall events. Frontiers in Earth Science, 9, 651731. https://doi.org/10.3389/feart.2021.651731]Search in Google Scholar
[Muhr D., Affenzeller M., 2022. Little data is often enough for distance-based outlier detection. Procedia Computer Science, 200, 984–992. https://doi.org/10.1016/j.procs.2022.01.297]Search in Google Scholar
[Nelson D.B., Basler D., Kahmen A., 2021. Precipitation isotope time series predictions from machine learning applied in Europe. Proceedings of the National Academy of Sciences, 118/26, e2024107118. https://doi.org/10.1073/pnas.2024107118]Search in Google Scholar
[Nigro M., Žagar K., Vreča P., 2024. A Simple Water Sample Storage Test for Water Isotope Analysis. Sustainability, 16, 4740. https://doi.org/10.3390/su16114740]Search in Google Scholar
[Putman A.L., Fiorella R.P., Bowen G.J., Cai Z., 2019. A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight Into Fundamental Controls and Practical Constraints. Water Resources Research, 55, 6896-6910 https://doi.org/10.1029/2019WR025181]Search in Google Scholar
[Rank D., Wyhlidal S., Heiss G., Papesch W., Schott K., 2016. Arsenal environmental-isotope laboratories 1964–2010: More than 45 years of production, application, and interpretation of isotope-hydrological data for Central Europe. Austrian Journal of Earth Sciences, 109, 4–28. https://doi.org/10.17738/ajes.2016.0001]Search in Google Scholar
[Rozanski K., Araguás-Araguás L., Gonfiantini R., 1993. Isotopic patterns in modern global precipitation. In: Swart P.K., Lohmann K.C., McKenzie J., Savin S. (eds.), Climate Change in Continental Isotopic Records. American Geophysical Union, USA, 1–36. https://doi.org/10.1029/GM078p0001]Search in Google Scholar
[Shekhar S., Lu C-T., Zhang P., 2003. A Unified Approach to Detecting Spatial Outliers. GeoInformatica, 7, 139–166. https://doi.org/10.1023/A:1023455925009]Search in Google Scholar
[Smiti A., 2020. A critical overview of outlier detection methods. Computer Science Review, 38, 100306. https://doi.org/10.1016/j.cosrev.2020.100306]Search in Google Scholar
[Vreča P., Pavšek A., Kocman D., 2022. SLONIP - A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation. Water, 14, 2127. https://doi.org/10.3390/w14132127]Search in Google Scholar
[Wilcox R.R., 2003. Probability and related concepts, In: Wilcox R.R., (ed.) Applying Contemporary Statistical Techniques, Academic Press, 17–53. https://doi.org/10.1016/B978-012751541-0/50023-7]Search in Google Scholar
[Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Silva Santos L.B., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Growth P., Goble C., Grethe J.S., Heringa J., ‘t Hoen P.A.C., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.A., Schultes E., Sengstag T., Slater T., Strawn G., Swertz M.A., Thompson M., van der Lei J., van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., Wolstencroft K., Zhao J., Mons B., 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018. https://doi.org/10.1038/sdata.2016.18]Search in Google Scholar
[Wu E., Liu W., Chawla S., 2010. Spatio-temporal Outlier Detection in Precipitation Data. In: Gaber M.M., Vatsavai R.R., Omitaomu O.A., Gama J., Chawla N.V., Ganguly A.R. (eds.), Knowledge Discovery from Sensor Data. Springer, Berlin, Heidelberg, 115–133. https://doi.org/10.1007/978-3-642-12519-5_7]Search in Google Scholar