Open Access

Screening a precipitation stable isotope database for inconsistencies prior to hydrological applications – examples from the Austrian Network for Isotopes in Precipitation

, ,  and   
Dec 31, 2024

Cite
Download Cover

Aggarwal P.K., Romatschke U., Araguas-Araguas L., Belachew D., Long-staffe F.J., Berg P., Schumacher C., Funk A. 2016. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, 9, 624–629. https://doi.org/10.1038/ngeo2739Search in Google Scholar

Benischke R., Brielmann H., Dalla-Via A., Goldbrunner J., Grath J., Harum T., Humer F., Kralik M., Leis A., Philippitsch R., Rank D., Reszler C., Schott K., Wemhöhner U., Wyhlidal S., 2018. Isotopenzusammensetzung in natürlichen Wässern in Österreich – Grundlagen und Anwendungsbeispiele zur Wasser-Isotopenkarte Österreichs 1:500 000, 154, Bundesministerium für Nachhaltigkeit und Tourismus, Vienna. https://info.bml.gv.at/dam/jcr:eba9348f-cefb-465f-94abfbbe444c9046/Wasser-Isotopenkarte_Bericht_final.pdfSearch in Google Scholar

BGBl. (Bundesgesetzblatt), 2006. Ordinance about the monitoring of the water Quality of the Austrian Federal Ministry of Sustainability and Tourism (BMNT), offices of provincial governments (Gewässerzustandsüberwachungsverordnung-GZÜV). II. Nr. 479, Vienna.Search in Google Scholar

Bowen G.J., Good S.P., 2015. Incorporating water isoscapes in hydro-logical and water resource investigations. WIREs Water, 2, 107–119. https://doi.org/10.1002/wat2.1069Search in Google Scholar

Bowen G.J., Putman A., Brooks J.R., Bowling D.R., Oerter E.J., Good S.P., 2018. Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187, 1025–1039. https://doi.org/10.1007/s00442-018-4192-5Search in Google Scholar

Di Cecco G.J., Gouhier T.C., 2018. Increased spatial and temporal autocorrelation of temperature under climate change. Scientific Reports, 8, 14850. https://doi.org/10.1038/s41598-018-33217-0Search in Google Scholar

Cervi F., Borgatti L., Dreossi G., Marcato G., Michelini M., Stenni B., 2017. Isotopic features of precipitation and groundwater from the Eastern Alps of Italy: Results from the Mt. Tinisa hydrogeological system. Environmental Earth Sciences, 76, 410. https://doi.org/10.1007/s12665-017-6748-9Search in Google Scholar

Coplen T.B., 1994. Reporting of stable hydrogen, carbon and oxygen isotopic abundances. Pure and Applied Chemistry, 66, 273–276. https://doi.org/10.1351/pac199466020273Search in Google Scholar

Coplen T.B., Herczeg A.L., Barnes C., 2000. Isotope Engineering - Using Stable Isotopes of the Water Molecule to Solve Practical Problems. In: Cook P.G., Herczeg A.L. (eds.), Environmental Tracers in Sub-surface Hydrology. Springer US, Boston, MA, 79–110. https://doi.org/10.1007/978-1-4615-4557-6_3Search in Google Scholar

Coplen T.B., Qi H., 2009. Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples. Isotopes in Environmental and Health Studies, 45, 126–134. https://doi.org/10.1080/10256010902871952Search in Google Scholar

Dansgaard W., 1964. Stable isotopes in precipitation. Tellus, 16, 436–468. https://doi.org/10.3402/tellusa.v16i4.8993Search in Google Scholar

Erdélyi D., Kern Z., Hatvan I.G., Vreča P., Žagar K., Huneau F., Perșoiu A., Leuenberger M., Lojen S., Kracht O., Harjung A., Rossi P., Mustonen K.-R., Welker J., 2024a. Machine learning analysis for predicting spatial distribution and key influencers of stable isotope patterns in European precipitation. EGU General Assembly. Vienna, Austria, 14–19 April 2024, EGU24-15660. https://doi.org/10.5194/egusphereegu24-15660Search in Google Scholar

Erdélyi D., Kern Z., Hatvan I.G., Vreča P., Žagar K., Huneau F., Perșoiu A., Leuenberger M., Lojen S., Kracht O., Harjung A., Rossi P., Mustonen K.-R., Welker J., 2024b. Predicting the spatial distribution of stable isotopes in monthly precipitation across Europe using a machine learning approach. 12th International Geostatistics Congress, Geo-statistics Congress, Ponta Delgada, Portugal.Search in Google Scholar

Erdélyi D., Kern Z., Nyitrai T., Hatvani I.G., 2023. Predicting the spatial distribution of stable isotopes in precipitation using a machine learning approach: A comparative assessment of random forest variants. GEM - International Journal on Geomathematics, 14, 14. https://doi.org/10.1007/s13137-023-00224-xSearch in Google Scholar

Eshel A., Alpert P., Messer H., 2022. Estimating the Parameters of the Spatial Autocorrelation of Rainfall Fields by Measurements From Commercial Microwave Links IEEE Transactions on Geo-science and Remote Sensing 60, 1–11. https://doi.org/10.1109/TGRS.2022.3165309Search in Google Scholar

Fórizs I., 2003. Isotopes as natural tracers in the water cycle: Examples from the Carpathian Basin. Studia UBB Physica, 48, 69–77.Search in Google Scholar

Fórizs I., 2005. Processes behind the isotopic water line: water cycle and climate Studia UBB Physica, 50, 138–146.Search in Google Scholar

Gat J.R., 2005. Some classical concepts of isotope hydrology. In: Aggarwal P.K., Gat J.R., Froehlich K.F. (eds.), Isotopes in the Water Cycle: Past, Present and Future of a Developing Science. Springer Netherlands, Dordrecht, 127–137. https://doi.org/10.1007/1-4020-3023-1_10Search in Google Scholar

Hager B., Foelsche U., 2015. Stable isotope composition of precipitation in Austria. Austrian Journal of Earth Sciences, 108, 2–14. https://doi.org/10.17738/ajes.2015.0012Search in Google Scholar

Hatvani I.G., Szatmári G., Kern Z., Erdélyi D., Vreča P., Kanduč T., Czuppon Gy., Lojen S., Kohán B., 2021. Geostatistical evaluation of the design of the precipitation stable isotope monitoring network for Slovenia and Hungary Environment International, 146, 106263. https://doi.org/10.1016/j.envint.2020.106263Search in Google Scholar

IAEA 1992. Statistical treatment of data on environmental isotopes in precipitation. Technical Report Series, Vol. 331. International Atomic Energy Agency, Vienna.Search in Google Scholar

IAEA 2023. Global Network of Isotopes in Precipitation. The GNIP Database. https://nucleus.iaea.org/wiser/explore/Search in Google Scholar

Kern Z., Hatvani I.G., Czuppon G., Fórizs I., Erdélyi D., Kanduč T., Palcsu L., Vreča P., 2020. Isotopic ‘Altitude’ and ‘Continental’ effects in modern precipitation across the Adriatic-Pannonian region. Water, 12, 1797. https://doi.org/10.3390/w12061797Search in Google Scholar

Knorr E.M, Ng R.T, Tucakov V., 2000. Distance-based outliers: algorithms and applications The VLDB Journal 8, 237–253. https://doi.org/10.1007/s007780050006Search in Google Scholar

Kralik M., Papesch W., Stichler W., 2003. Austrian Network of Isotopes in Precipitation (ANIP): Quality assurance and climatological phenomenon in one of the oldest and densest networks in the world. Isotope Hydrology and Integrated Water Resources Management. 146–149.Search in Google Scholar

Kralik M., Terzer S., Wyhlidal S., 2015. Vienna GNIP-ANIP-station: a unique station with 40 years of dual measurements. In International Symposium on Isotope Hydrology, 104–106.Search in Google Scholar

Landwehr J., Coplen T., 2006. Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In: International conference on isotopes in environmental studies, Monaco, vol 56. IAEA Vienna, Vienna, Austria, 132–135.Search in Google Scholar

Liu J., Song X., Yuan G., Sun X., Yang L., 2014. Stable isotopic compositions of precipitation in China Tellus B: Chemical and Physical Meteorology, 66, 22567. https://doi.org/10.3402/tellusb.v66.22567Search in Google Scholar

Mellat M., Bailey H., Mustonen K.-R., Marttila H., Klein E.S., Gribanov K., Bret-Harte M.S., Chupakov A.V., Divine D.V., Else B., Filippov I., Hyöky V., Jones S., Kirpotin S.N., Kroon A., Markussen H.T., Nielsen M., Olsen M., Paavola R., Pokrovsky O.S., Prokushkin A., Rasch M., Raundrup K., Suominen O., Syvänperä I., Vignisson S.R., Zarov E., Welker J.M., 2021. Hydroclimatic controls on the isotopic (δ18O, δ2H, d-excess) traits of pan-Arctic summer rainfall events. Frontiers in Earth Science, 9, 651731. https://doi.org/10.3389/feart.2021.651731Search in Google Scholar

Muhr D., Affenzeller M., 2022. Little data is often enough for distance-based outlier detection. Procedia Computer Science, 200, 984–992. https://doi.org/10.1016/j.procs.2022.01.297Search in Google Scholar

Nelson D.B., Basler D., Kahmen A., 2021. Precipitation isotope time series predictions from machine learning applied in Europe. Proceedings of the National Academy of Sciences, 118/26, e2024107118. https://doi.org/10.1073/pnas.2024107118Search in Google Scholar

Nigro M., Žagar K., Vreča P., 2024. A Simple Water Sample Storage Test for Water Isotope Analysis. Sustainability, 16, 4740. https://doi.org/10.3390/su16114740Search in Google Scholar

Putman A.L., Fiorella R.P., Bowen G.J., Cai Z., 2019. A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight Into Fundamental Controls and Practical Constraints. Water Resources Research, 55, 6896-6910 https://doi.org/10.1029/2019WR025181Search in Google Scholar

Rank D., Wyhlidal S., Heiss G., Papesch W., Schott K., 2016. Arsenal environmental-isotope laboratories 1964–2010: More than 45 years of production, application, and interpretation of isotope-hydrological data for Central Europe. Austrian Journal of Earth Sciences, 109, 4–28. https://doi.org/10.17738/ajes.2016.0001Search in Google Scholar

Rozanski K., Araguás-Araguás L., Gonfiantini R., 1993. Isotopic patterns in modern global precipitation. In: Swart P.K., Lohmann K.C., McKenzie J., Savin S. (eds.), Climate Change in Continental Isotopic Records. American Geophysical Union, USA, 1–36. https://doi.org/10.1029/GM078p0001Search in Google Scholar

Shekhar S., Lu C-T., Zhang P., 2003. A Unified Approach to Detecting Spatial Outliers. GeoInformatica, 7, 139–166. https://doi.org/10.1023/A:1023455925009Search in Google Scholar

Smiti A., 2020. A critical overview of outlier detection methods. Computer Science Review, 38, 100306. https://doi.org/10.1016/j.cosrev.2020.100306Search in Google Scholar

Vreča P., Pavšek A., Kocman D., 2022. SLONIP - A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation. Water, 14, 2127. https://doi.org/10.3390/w14132127Search in Google Scholar

Wilcox R.R., 2003. Probability and related concepts, In: Wilcox R.R., (ed.) Applying Contemporary Statistical Techniques, Academic Press, 17–53. https://doi.org/10.1016/B978-012751541-0/50023-7Search in Google Scholar

Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Silva Santos L.B., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Growth P., Goble C., Grethe J.S., Heringa J., ‘t Hoen P.A.C., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.A., Schultes E., Sengstag T., Slater T., Strawn G., Swertz M.A., Thompson M., van der Lei J., van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., Wolstencroft K., Zhao J., Mons B., 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018. https://doi.org/10.1038/sdata.2016.18Search in Google Scholar

Wu E., Liu W., Chawla S., 2010. Spatio-temporal Outlier Detection in Precipitation Data. In: Gaber M.M., Vatsavai R.R., Omitaomu O.A., Gama J., Chawla N.V., Ganguly A.R. (eds.), Knowledge Discovery from Sensor Data. Springer, Berlin, Heidelberg, 115–133. https://doi.org/10.1007/978-3-642-12519-5_7Search in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Geosciences, Geophysics, Geology and Mineralogy, Geosciences, other