Cite

1. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519-23.10.1126/science.1204265Search in Google Scholar

2. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179-85.10.1038/nature10809Search in Google Scholar

3. Choi S, Diehl AM. Role of inflammation in nonalcoholic steatohepatitis. Current opinion in gastroenterology. 2005;21(6):702-7.10.1097/01.mog.0000182863.96421.47Search in Google Scholar

4. Mouralidarane A, Soeda J, Visconti-Pugmire C, Samuelsson AM, Pombo J, Maragkoudaki X, et al. Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology. 2013;58(1):128-38.10.1002/hep.26248Search in Google Scholar

5. Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology. 2005;42(4):880-5.10.1002/hep.20826Search in Google Scholar

6. Grarup N, Sandholt CH, Hansen T, Pedersen O. Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia. 2014;57(8):1528-41.10.1007/s00125-014-3270-4Search in Google Scholar

7. Lin YC, Chang PF, Chang MH, Ni YH. Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals. Am J Clin Nutr. 2014;99(4):869-74.10.3945/ajcn.113.079749Search in Google Scholar

8. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829-38.10.1172/JCI34275Search in Google Scholar

9. Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes, obesity & metabolism. 2010;12 Suppl 2:83-92.10.1111/j.1463-1326.2010.01275.xSearch in Google Scholar

10. Negrin KA, Roth Flach RJ, DiStefano MT, Matevossian A, Friedline RH, Jung D, et al. IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis. PLoS One. 2014;9(9):e107265.10.1371/journal.pone.0107265Search in Google Scholar

11. Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N, Arsenijevic N, et al. IL-33/ST2 axis in inflammation and immunopathology. Immunol Res. 2012;52(1-2):89-99.10.1007/s12026-012-8283-9Search in Google Scholar

12. Miller AM, Asquith DL, Hueber AJ, Anderson LA, Holmes WM, McKenzie AN, et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res. 2010;107(5):650-8.10.1161/CIRCRESAHA.110.218867Search in Google Scholar

13. Marvie P, Lisbonne M, L'Helgoualc'h A, Rauch M, Turlin B, Preisser L, et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med. 2010;14(6b):1726-39.10.1111/j.1582-4934.2009.00801.xSearch in Google Scholar

14. McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity. 2013;39(2):357-71.10.1016/j.immuni.2013.07.018Search in Google Scholar

15. Townsend MJ, Fallon PG, Matthews DJ, Jolin HE, McKenzie AN. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J Exp Med. 2000;191(6):1069-76.10.1084/jem.191.6.1069Search in Google Scholar

16. Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979;11(4):447-55.10.1007/BF01002772Search in Google Scholar

17. Hadi AM, Mouchaers KT, Schalij I, Grunberg K, Meijer GA, Vonk-Noordegraaf A, et al. Rapid quantification of myocardial fibrosis: A new macro-based automated analysis. Anal Cell Pathol (Amst). 2010;33(5):257-69.10.1155/2010/858356Search in Google Scholar

18. Deutsch MJ, Schriever SC, Roscher AA, Ensenauer R. Digital image analysis approach for lipid droplet size quantitation of Oil Red O-stained cultured cells. Anal Biochem. 2014;445:87-9.10.1016/j.ab.2013.10.001Search in Google Scholar

19. Juluri R, Vuppalanchi R, Olson J, Unalp A, Van Natta ML, Cummings OW, et al. Generalizability of the non-alcoholic steatohepatitis Clinical Research Network histologic scoring system for nonalcoholic fatty liver disease. J Clin Gastroenterol. 2011;45(1):55-8.10.1097/MCG.0b013e3181dd1348Search in Google Scholar

20. Volarevic V, Mitrovic M, Milovanovic M, Zelen I, Nikolic I, Mitrovic S, et al. Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J Hepatol. 2012;56(1):26-33.10.1016/j.jhep.2011.03.022Search in Google Scholar

21. Foster B, Prussin C, Liu F, Whitmire JK, Whitton JL. Detection of intracellular cytokines by flow cytometry. Curr Protoc Immunol. 2007;Chapter 6:Unit 6.24.10.1002/0471142735.im0624s78Search in Google Scholar

22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8.10.1006/meth.2001.1262Search in Google Scholar

23. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013;56(5):1129-39.10.1007/s00125-013-2846-8Search in Google Scholar

24. Pantic JM, Pejnovic NN, Radosavljevic GD, Jovanovic I.P, Djukic ALJ, Arsenijevic NN, Lukic ML. Lack of ST2 enhances high - fat diet -induced visceral adiposity and inflammation in BALB/c mice [Delecija gena za ST2 promoviše gojaznost i inflamaciju u visceralnom adipoznom tkivu BALB/c miševa na dijeti sa visokim sadržajem masti]. Serb J Exp Clin Res 2013; 14(4): 155 -160.10.5937/sjecr14-5243Search in Google Scholar

25. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343-51.10.1172/JCI23621Search in Google Scholar

26. Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res. 2006;53(6):482-91.10.1016/j.phrs.2006.03.009Search in Google Scholar

27. McKenna LA, Jordan F, Brown EA, Huda SS, Mackay VA, Miller AM, et al. The role of interleukin-33 and its receptor ST2 in human pregnancy. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2011;96(Suppl 1):Fa98.10.1136/adc.2011.300163.5Search in Google Scholar

28. Su X, Abumrad NA. Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab. 2009;20(2):72-7.10.1016/j.tem.2008.11.001Search in Google Scholar

29. Grefhorst A, Parks EJ. Reduced insulin-mediated inhibition of VLDL secretion upon pharmacological activation of the liver X receptor in mice. J Lipid Res. 2009;50(7):1374-83.10.1194/jlr.M800505-JLR200Search in Google Scholar

30. Beaven SW, Matveyenko A, Wroblewski K, Chao L, Wilpitz D, Hsu TW, et al. Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell metabolism. 2013;18(1):106-17.10.1016/j.cmet.2013.04.021Search in Google Scholar

31. Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martinez-Clemente M, Gonzalez-Periz A, et al. Role for PPARgamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J. 2011;25(8):2538-50.10.1096/fj.10-173716Search in Google Scholar

32. Tang Y, Bian Z, Zhao L, Liu Y, Liang S, Wang Q, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol. 2011;166(2):281-90.10.1111/j.1365-2249.2011.04471.xSearch in Google Scholar

33. Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol. 2013;191(4):1835-44.10.4049/jimmunol.1203013Search in Google Scholar

34. Lin SL, Castano AP, Nowlin BT, Lupher ML, Jr., Duffield JS. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol. 2009;183(10):6733-43.10.4049/jimmunol.0901473Search in Google Scholar

35. Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50(1):261-74.10.1002/hep.22950Search in Google Scholar

36. Tacke F. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis & tissue repair. 2012;5(Suppl 1 Proceedings of Fibroproliferative disorders: from biochemical analysis to targeted therapies-Petro E Petrides and David Brenner):S27.10.1186/1755-1536-5-S1-S27Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other