Open Access

Durability of crystalline phase in concrete microstructure modified by the mineral powders: evaluation by nanoindentation tests


Cite

Bobko C.P., 2008, Assessing the mechanical microstructure of shale by nanoindentation: The link between mineral composition and mechanical properties, Doctoral dissertation, Massachusetts Institute of Technology.Search in Google Scholar

Boussinesq J., 1885, Applications des potentiels h l’rtude de l’rquilibre et du mouvement des solides 61 astiques, Gauthier-Villars.Search in Google Scholar

Constantinides G., Ulm F.J., Van Vliet K., 2003, On the use of nanoindentation for cementitious materials, Materials and Structures, 36(3), 191–196.10.1007/BF02479557Search in Google Scholar

Constantinides G., Chandran K.R., Ulm F.J., Van Vliet K.J., 2006, Grid indentation analysis of composite microstructure and mechanics: principles and validation, Materials Science and Engineering: A, 430(1), 189–202.10.1016/j.msea.2006.05.125Search in Google Scholar

Doerner M.F., Nix W.D., 1986, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, 1(04), 601–609.10.1557/JMR.1986.0601Search in Google Scholar

Fan Z., Swadener J.G., Rho J.Y., Roy M.E., Pharr G.M., 2002, Anisotropic properties of human tibial cortical bone as measured by nanoindentation. Journal of Orthopaedic Research, 20(4), 806–810.10.1016/S0736-0266(01)00186-3Search in Google Scholar

Krakowiak K.J., Lourenço P.B., Ulm F.J., 2011, Multitechnique investigation of extruded clay brick microstructure, Journal of the American Ceramic Society, 94(9), 3012–3022.10.1111/j.1551-2916.2011.04484.xSearch in Google Scholar

Krakowiak K.J., 2011, Assessment of the mechanical microstructure of masonry clay brick by nanoindentation.Search in Google Scholar

Mondal P., Shah S., Marks L., Gaitero J., 2010, Comparative study of the effects of microsilica and nanosilica in concrete, Transportation Research Record: Journal of the Transportation Research Board, 2141, 6–9.10.3141/2141-02Search in Google Scholar

Němeček J., Kopecký L., Bittnar Z., 2005, Size effect in nanoindentation of cement paste, [in:] Proceedings of the International Conference on Applications of Nanotechnology in Concrete Design, Eds. Dhir, RK, 47–53.10.1680/aonicd.34082.0005Search in Google Scholar

Nežerka V., Němeček J., Slížková Z., Tesárek P., 2015, Investigation of crushed brick-matrix interface in lime-based ancient mortar by microscopy and nanoindentation, Cement and Concrete Composites, 55, 122–128.10.1016/j.cemconcomp.2014.07.023Search in Google Scholar

Oliver W.C., Pharr G.M., 2004, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, 19(01), 3–20.10.1557/jmr.2004.19.1.3Search in Google Scholar

Pharr G.M., Oliver W.C., 1992, Measurement of thin film mechanical properties using nanoindentation, Mrs Bulletin, 17(07), 28–33.10.1557/S0883769400041634Search in Google Scholar

Rho J.Y., Tsui T.Y., Pharr G.M., 1997, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, 18(20), 1325–1330.10.1016/S0142-9612(97)00073-2Search in Google Scholar

Rho J.Y., Zioupos P., Currey J.D., Pharr G.M., 2002, Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation, Journal of Biomechanics, 35(2), 189–198.10.1016/S0021-9290(01)00199-3Search in Google Scholar

Sorelli L., Constantinides G., Ulm F.J., Toutlemonde F., 2008, The nano-mechanical signature of ultra-high performance concrete by statistical nanoindentation techniques, Cement and Concrete Research, 38(12), 1447–1456.10.1016/j.cemconres.2008.09.002Search in Google Scholar

Syed Asif S.A., Pethica J.B., 1997, Nanoindentation creep of single-crystal tungsten and gallium arsenide, Philosophical Magazine A, 76(6), 1105–1118.10.1080/01418619708214217Search in Google Scholar

Tarefder R., Faisal H., 2013, Nanoindentation characterization of asphalt concrete aging, Journal of Nanomechanics and Micromechanics, 4(1), A4013003.10.1061/(ASCE)NM.2153-5477.0000061Search in Google Scholar

Ulm F.J., Vandamme M., Bobko C., Alberto Ortega J., Tai K., Ortiz C., 2007, Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale, Journal of the American Ceramic Society, 90(9), 2677–2692.10.1111/j.1551-2916.2007.02012.xSearch in Google Scholar

Vandamme M., 2008, The nanogranular origin of concrete creep: a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates, Doctoral dissertation, Massachusetts Institute of Technology.Search in Google Scholar

Xiao J., Li W., Sun Z., Lange D.A., Shah S.P., 2013, Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation, Cement and Concrete Composites, 37, 276–292.10.1016/j.cemconcomp.2013.01.006Search in Google Scholar

Zadeh V.Z., Bobko C.P., 2013, Nanoscale mechanical properties of concrete containing blast furnace slag and fly ash before and after thermal damage, Cement and Concrete Composites, 37, 215–221.10.1016/j.cemconcomp.2012.09.003Search in Google Scholar

eISSN:
2083-831X
ISSN:
0137-6365
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics