1. bookVolume 64 (2015): Issue 1-6 (December 2015)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Logging decreases the pollen dispersal distance in a low-density population of the tree Bagassa guianensis in the Brazilian Amazon

Published Online: 07 Jun 2017
Page range: 279 - 290
Received: 08 Dec 2015
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

This study investigates the distance and patterns of pollen dispersal before and after logging in a low-density population of the dioecious, insect pollinated tree species, Bagassa guianensis, in the Brazilian Amazon. All adult trees found before and after logging in a 500 ha plot were mapped and genotyped for six microsatellite loci. Seeds collected before and after logging were also sampled and genotyped. We used a categorical paternity analysis to determine seed paternity. Our results showed similar levels of pollen flow before (23%) and after logging (26%), but an increase in the mean effective pollination neighbourhood area, and a decrease in the rate of mating among relatives after logging, resulting in open pollinated seeds with lower levels of inbreeding (0.126) than before logging (0.222). We also detected changes in the mating pattern between before and after logging, a decrease in the median pollen dispersal distance and effective number of pollen donors after logging. Our results support the idea that reproductive trees should be maintained in the plot and around logged areas, using lowest levels of logging intensity to maintain pollen flow and decrease the relatedness of subsequent generations.

Keywords

ARRUDA, C. C. B., M. B. SIKVA, A. M. SEBBENN, M. KANASHIRO, M. R. LEMES and R. GRIBEL (2015): Mating system and genetic diversity of progenies before and after logging: a case study of Bagassa guianensis (Moraceae), a low-density dioecious tree of the Amazonian forest. Tree Genetics & Genomes 11: 1-9.10.1007/s11295-015-0837-2Search in Google Scholar

ASHLEY, M. V. (2010): Plant parentage, pollination, and dispersal: How DNA microsatellites have altered the landscape. Critical Review in Plant Science 29: 148-161.10.1080/07352689.2010.481167Search in Google Scholar

AZEVEDO, V. C. R., K. KANASHIRO, A. Y. AND D. GRATTAPAGLIA (2007): Genetic structure and mating system of Manilkara huberi (Ducke) A. Chev., a heavily logged Amazonian timber species. Journal of Heredity 98: 646-654.10.1093/jhered/esm07417873149Search in Google Scholar

BURCZYK, J., S. P. DIFAZIO and W. T. ADAMS (2004): Gene flow in forest trees: how far do genes really travel. Forest Genetics 11: 1-14.Search in Google Scholar

CARNEIRO, F., B. DEGEN, M. KANASHIRO, A. E. B. LACERDA and A. S. SEBBENN (2009): High levels of pollen dispersal in Symphonia globulifera in a dense Brazilian Amazon forest revealed by paternity analysis. Forest Ecology Management 258: 1260-1266.10.1016/j.foreco.2009.06.019Search in Google Scholar

CARNEIRO, F. S., A. E. B. LACERDA, M. L. LEMES, R. GRIBEL, M. KANASHIRO, L. H. O. WADT and A. M. SEBBENN (2011): Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L. (Leguminosae) in the Eastern Brazilian Amazon as revealed by microsatellite analysis. Forest Ecology Management 262: 1758-1765.10.1016/j.foreco.2011.07.023Search in Google Scholar

DEGEN, B. and A. M. SEBBENN (2014): Genetics and tropical forests. In: PANCEL, L. and M. KÖLH, editors. Tropical Forestry Handbook, 2nd ed. Berlin Heidelberg: Springer Verlag; p. 1-30.10.1007/978-3-642-41554-8_75-1Search in Google Scholar

DICK, C. W., F. A. JONES, O. J. HARDY and R. PETIT (2008): Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Tropical Plant Biology 1: 20-33.10.1007/s12042-007-9006-6Search in Google Scholar

DOW, B. D. and M. V. ASHLEY (1996): Microsatellite analysis of seed dispersal and parentage of sampling in bur oak, Quercus macrocarpa. Molecular Ecology 5: 615-627.10.1111/j.1365-294X.1996.tb00357.xSearch in Google Scholar

DUNPHY, B. K., J. L. HAMRICK and J. SCHWAGERL (2004): A comparison of direct and indirect measures of gene flow in the bat-pollinated tree Hymenaea courbaril in the dry forest life zone of south-western Puerto Rico. International Journal Plant Science 165: 427-436.10.1086/382802Search in Google Scholar

ELLESTRAND, N. C. (2014): Is gene flow the most important evolutionary force in plants? American Journal of Botany 21: 737-753.10.3732/ajb.140002424752890Search in Google Scholar

HARDY, O. and X. VEKEMANS (2002): SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620.10.1046/j.1471-8286.2002.00305.xSearch in Google Scholar

HAWLEY, G. J., P. G. SCHABERG, D. H. DEHAYES and J. C. BRISSETTE (2005): Silviculture alters the genetic structure of an eastern hemlock forest in Maine, USA. Canadian. Journal of Forest Resources 35: 143-150.10.1139/x04-148Search in Google Scholar

KLEIN, E. K., N. DESASSIS and S. ODDOU-MURATORIO (2008): Pollen flow in the wild service tree, Sorbus torminalis (L.) Crantz. IV. Whole interindividual variance of male fecundity estimated jointly with the dispersal kernel. Molecular Ecology 17: 3323-3336.10.1111/j.1365-294X.2008.03809.x18564088Search in Google Scholar

LACERDA, A. E. B., E. R. NIMMO and A. M. SEBBENN (2013): Modelling the long-term impacts of logging on genetic diversity and demography of Hymenaea courbaril. Forest Science 59: 15-26.10.5849/forsci.10-118Search in Google Scholar

LACERDA, E. B. L., A. M. SEBBENN and M. KANASHIRO (2008): Long-pollen movement and deviation of random mating in a low-density continuous population of Hymenaea courbaril in the Brazilian Amazon. Biotropica 40: 462-470.10.1111/j.1744-7429.2008.00402.xSearch in Google Scholar

LEVIN, D. A. (1988): The paternity pool plants. American Naturalist 132: 309-317.10.1086/284854Search in Google Scholar

LEWIS, T. (1973): Thrips: their biology, ecology and economic importance. Academic Press, New York, New York, USA.Search in Google Scholar

LOISELLE, B. A., V. L. SORK, J. NASON and C. GRAHAM (1995): Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420-1425.10.1002/j.1537-2197.1995.tb12679.xSearch in Google Scholar

LOURMAS, M., F. KJELLBERG, H. DESSARD, H. I. JOLY and M-H. CHEVALLIER (2007): Reduced density due to logging and its consequences on mating system and pollen flow in the African mahogany Entandrophragma cylindricum. Heredity 99: 151-160.10.1038/sj.hdy.680097617473865Search in Google Scholar

LOWE, A. J., D. BOSHIER, M. WARD, C. F. E. BACLES and C. NAVARRO (2005): Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for Neotropical trees. Heredity 95: 255-273.10.1038/sj.hdy.680072516094300Search in Google Scholar

MARSHALL, T. C., J. SLATE, L. E. B. KRUUK and J. M. PEMBERTON (1998): Statistical confidence for likelihood- based paternity inference in natural populations. Molecular Ecology 7: 639-655.10.1046/j.1365-294x.1998.00374.x9633105Search in Google Scholar

MAUÉS, M. M. (2006): Estratégias reprodutivas de espécies arbóreas e a sua importância para o manejo e conservação florestal: Floresta Nacional do Tapajós (Belterra-PA). PhD. Thesis, University of Brasília, 218 pp.Search in Google Scholar

MEAGHER, T. R. (1986): Analysis of paternity within a natural population of Chamaelirium luteum. 1. Identification of most-likely male parents. American Naturalist 128: 199-215.10.1086/284554Search in Google Scholar

RAJORA, O. P., M. H. RAHMAN, G. P. BUCHERT and B. P. DANCIK (2000): Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Molecular Ecology 9: 339-348.10.1046/j.1365-294x.2000.00886.x10736031Search in Google Scholar

RITLAND, K. (2002): Extensions of models for the estimation of mating systems using n independent loci. Heredity 88: 221-228.10.1038/sj.hdy.680002911920127Search in Google Scholar

SAS INSTITUTE INC. (1999): SAS Procedures Guide. Version 8 (TSMO) SAS Institute Inc., Cary, NC.Search in Google Scholar

SEBBENN, A. M., J. C. LICONA, B. MOSTACEDO and B. DEGEN (2012): Gene flow in an overexploited population of Swietenia macrophylla King (Meliaceae) in the Bolivian Amazon. Silvae Genetica 61: 212-220.10.1515/sg-2012-0027Search in Google Scholar

SEBBENN, A. M., B. DEGEN, V. C. R. AZEVEDO, M. B. SILVA, A. E. B. LACERDA, A. Y. CIAMPI, M. KANASHIRO, F. S. CARNEIRO, I. TOMPSON and M. D. LOVELESS (2008): Modelling the long term impact of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. Forest Ecology and Management 254: 335-349.10.1016/j.foreco.2007.08.009Search in Google Scholar

SILVA, M. B., M. KANASHIRO, A. Y. CIAMPI, I. TOMPSON and A. M. SEBBENN (2008): Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. Forest Ecology and Management 255: 1548-1558.10.1016/j.foreco.2007.11.012Search in Google Scholar

SOKAL, R. R. and F. J. ROHLF (1995): Biometry: principles and practices of statistics in biological research. Third Edition. W. H. Freeman and Company, New York.Search in Google Scholar

VEGA, L. (1976): Bagassa guianensis Aubl. Una especie forestal de rapido crecimiento del tropico americano. Boletim do Instituto Florestal. Lat- America Investigation 50: 3-28.Search in Google Scholar

VINSON, C. C., M. B. SILVA, M. I. SAMPAIO and A. Y. CIAMPI (2010): Microsatellite markers for a dioecious Amazon tree, Bagassa guianensis Aubl. (Moraceae). Molecular Ecology Resources 10: 1106-1108.Search in Google Scholar

VINSON, C. C., M. KANASHIRO, S. A. HARRIS and D. H. BOSHIER (2015): Impacts of selective logging on inbreeding and gene flow in two Amazonian timber species with contrasting ecological and reproductive characteristics. Molecular Ecology 24: 38-53.10.1111/mec.1300225402015Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo