1. bookVolume 67 (2017): Issue 2 (November 2017)
Journal Details
License
Format
Journal
eISSN
2450-5471
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

Identification of Fatigue Cracks on the Basis of Measurable Changes in System Dynamics

Published Online: 18 Nov 2017
Volume & Issue: Volume 67 (2017) - Issue 2 (November 2017)
Page range: 77 - 84
Journal Details
License
Format
Journal
eISSN
2450-5471
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

In order to obtain correct experimental results, fatigue strength tests carried out on the basis of a measurement setup using dynamic excitation generated by inertial force require test completion criterion to be specified. The paper presents the method applied to identify damage on the basis of an analysis of changes in registered acceleration amplitudes based on experimental studies, and an analysis of image of obtained fatigue fractures.

Keywords

[1] S. Gupta, A. Ray, E. Keller. Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process.2007 (21), No. 2, 866 – 884.10.1016/j.ymssp.2005.08.022Open DOISearch in Google Scholar

[2] Y. Furuya. Small internal fatigue crack growth rate measured by beach marks. Mater. Sci. Eng. A2016 (678), 260 – 266.10.1016/j.msea.2016.09.109Search in Google Scholar

[3] M. E. Biancolini, C. Brutti, G. Paparo, A. Zanini. Fatigue cracks nucleation on steel, acoustic emission and fractal analysis. Int. J. Fatigue2006 (28), No. 12, 1820 – 1825.10.1016/j.ijfatigue.2005.12.003Open DOISearch in Google Scholar

[4] M. Kurek, T. Lagoda, D. Katzy. Comparison of Fatigue Characteristics of some Selected Materials. Mater. Test.2014 (56), No. 2, 92 – 95.Search in Google Scholar

[5] Ličková, D. et al. Identification of Fatigue Constants by Means of 3D Method. Journal of Mechanical Engineering – Strojnícky časopis2016 (66), No. 2, 107–116.10.1515/scjme-2016-0025Search in Google Scholar

[6] J. Ge, Y. Sun, S. Zhou, L. Zhang, Y. Zhang, and Q. Zhang. A hybrid frequency–time domain method for predicting multiaxial fatigue life of 7075-T6 aluminium alloy under random loading. Fatigue Fract. Eng. Mater. Struct.2014 (38), 247 – 256.Search in Google Scholar

[7] A. Nieslony, E. Macha. Spectral Method in Multiaxial Random Fatigue. Springer, 2007.Search in Google Scholar

[8] Karolczuk, E. Macha. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials. Int. J. Fract.2005 (134), No. 3–4, 267 – 304.Search in Google Scholar

[9] K. Walat, M. Kurek, P. Ogonowski, T. Łagoda. The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range. Int. J. Fatigue2012 (37), 100–111.10.1016/j.ijfatigue.2011.09.013Search in Google Scholar

[10] K. Kluger, T. Łagoda. Fatigue life of metallic material estimated according to selected models and load conditions. J. Theor. Appl. Mech.2013 (51), No. 3, 581 – 592.Search in Google Scholar

[11] K. Kluger. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress. Int. J. Fatigue2015 (80), 22 – 29.10.1016/j.ijfatigue.2015.05.005Search in Google Scholar

[12] R. Owsinski, et al. Evaluation of fatigue life of steel using steel grain size. Materialwiss. Werkstofftech.2015 (46), No. 10, 1059 – 1067.Search in Google Scholar

[13] Niesłony, A. et al. Durability Tests Acceleration Performed on Machine Components Using Electromagnetic Shakers. In: Dynamical Systems: Theoretical and Experimental Analysis. Springer, Cham 2016, 293 – 305.10.1007/978-3-319-42408-8_23Search in Google Scholar

[14] R. Owsiński, A. Niesłony. Analytical Model of Dynamic Behaviour of Fatigue Test Stand – Description and Experimental Validation. In: Dynamical Systems: Modelling2015, 293 – 317.10.1007/978-3-319-42402-6_24Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo